针对自然场景下中文小文本难以定位的问题,提出了基于高斯密度图估计的并行深度网络对自然场景汉字进行检测。首先将中文数据集中的汉字位置信息转换为高斯文字密度图;其次引入一种多级并行连接结构,提高网络细节信息捕捉能力;最后再融...针对自然场景下中文小文本难以定位的问题,提出了基于高斯密度图估计的并行深度网络对自然场景汉字进行检测。首先将中文数据集中的汉字位置信息转换为高斯文字密度图;其次引入一种多级并行连接结构,提高网络细节信息捕捉能力;最后再融合网络中的上采样特征信息得到高精度文字密度图,最终实现对文字区域的定位。在中文数据集CTW(Chinese text in the wild)上进行了实验,实验结果表明提出方法准确率和召回率均有较大提升,证明了该方法的可行性和准确性。展开更多
研究了同步定位与地图创建(SLAM)中的数据关联问题。针对环境特征数未知时,数据关联的误关联率增加,导致SLAM的定位精度偏低的问题,提出了高斯混合概率假设密度SLAM算法。首先采用UFastSLAM解决SLAM中的粒子退化和耗尽问题,其次针对地...研究了同步定位与地图创建(SLAM)中的数据关联问题。针对环境特征数未知时,数据关联的误关联率增加,导致SLAM的定位精度偏低的问题,提出了高斯混合概率假设密度SLAM算法。首先采用UFastSLAM解决SLAM中的粒子退化和耗尽问题,其次针对地图特征数未知的情况,将UFastSLAM算法中的数据关联问题转换成有限集统计理论跟踪算法的高斯混合问题,利用高斯混合概率假设密度(Gaussian Mixture Probability Hypothesis Density,GMPHD)算法解决UFastSLAM中数据关联问题。仿真实验结果表明本文提出的GMPHD-UFastSLAM算法在地图特征个数未知的情况下,数据关联准确率和定位精度都得到了提高。展开更多
文摘针对自然场景下中文小文本难以定位的问题,提出了基于高斯密度图估计的并行深度网络对自然场景汉字进行检测。首先将中文数据集中的汉字位置信息转换为高斯文字密度图;其次引入一种多级并行连接结构,提高网络细节信息捕捉能力;最后再融合网络中的上采样特征信息得到高精度文字密度图,最终实现对文字区域的定位。在中文数据集CTW(Chinese text in the wild)上进行了实验,实验结果表明提出方法准确率和召回率均有较大提升,证明了该方法的可行性和准确性。
文摘研究了同步定位与地图创建(SLAM)中的数据关联问题。针对环境特征数未知时,数据关联的误关联率增加,导致SLAM的定位精度偏低的问题,提出了高斯混合概率假设密度SLAM算法。首先采用UFastSLAM解决SLAM中的粒子退化和耗尽问题,其次针对地图特征数未知的情况,将UFastSLAM算法中的数据关联问题转换成有限集统计理论跟踪算法的高斯混合问题,利用高斯混合概率假设密度(Gaussian Mixture Probability Hypothesis Density,GMPHD)算法解决UFastSLAM中数据关联问题。仿真实验结果表明本文提出的GMPHD-UFastSLAM算法在地图特征个数未知的情况下,数据关联准确率和定位精度都得到了提高。