期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多目立体视觉三维重建系统的设计 被引量:7
1
作者 章秀华 白浩玉 李毅 《武汉工程大学学报》 CAS 2013年第3期70-74,共5页
针对工业产品质量检测过程中产品三维表面的重建问题,提出一种基于多目立体视觉三维重建方法.设计了一套由八个直线分布的工业相机构成的三维重建系统方案.首先通过图像采集模块,在八个不同方向对目标物体进行图像采集.其次对采集到的... 针对工业产品质量检测过程中产品三维表面的重建问题,提出一种基于多目立体视觉三维重建方法.设计了一套由八个直线分布的工业相机构成的三维重建系统方案.首先通过图像采集模块,在八个不同方向对目标物体进行图像采集.其次对采集到的图像进行预处理,其中包括图像背景抑制和目标物体分割.然后通过相机标定模块,对八个相机进行标定,获得它们的内外参数,并结合Harris角点检测及高斯差分检测算法对预处理后的图像实现特征点提取.在此结果上,再利用三角形法对提取到的特征点进行匹配和校正.最后采用泊松表面重建方法准确地获取和优化角点,并找到角点特征的匹配点,从而对物体进行三维表面的精确重建.实验结果表明,设计的系统能够重建出静止物体的局部三维表面,重建结果中的物体表面完整,结构清晰,表面上的字符重建完整,能够很好地进行识别. 展开更多
关键词 多目视觉 张正友标定 HARRIS角点检测 高斯差分检测 泊松表面重建
下载PDF
ADS-B Anomaly Data Detection Model Based on Deep Learning and Difference of Gaussian Approach 被引量:6
2
作者 WANG Ershen SONG Yuanshang +5 位作者 XU Song GUO Jing HONG Chen QU Pingping PANG Tao ZHANG Jiantong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期550-561,共12页
Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for position... Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models. 展开更多
关键词 general aviation aircraft automatic dependent surveillance-broadcast(ADS-B) anomaly data detection deep learning difference of Gaussian(DoG) long short-term memory(LSTM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部