介绍了大地主题解算基本方法,以Visual Studio 2010作为开发平台,采用C#语言编写,设计实现了一套基于高斯平均引数的大地主题解算实用程序,指出该程序功能强大,实现了单点和批量大地主题解算,能方便的将计算结果保存在文本,且精度满足...介绍了大地主题解算基本方法,以Visual Studio 2010作为开发平台,采用C#语言编写,设计实现了一套基于高斯平均引数的大地主题解算实用程序,指出该程序功能强大,实现了单点和批量大地主题解算,能方便的将计算结果保存在文本,且精度满足大地测量及相应工程的需求。展开更多
A CMOS fully-differential 2.4GHz ∑-△ frequency synthesizer for Gaussian minimum shift keying (GMSK)modulation is presented. A pre-compensation fractional-N phase-locked loop(PLL)is adopted in the modulator.The t...A CMOS fully-differential 2.4GHz ∑-△ frequency synthesizer for Gaussian minimum shift keying (GMSK)modulation is presented. A pre-compensation fractional-N phase-locked loop(PLL)is adopted in the modulator.The transfer function of the type- Ⅱ third-order phase-locked loop is deduced,and the important parameters that affect the loop transfer function are pointed out. Methods to calibrate the important loop parameters arc introduced. A differential tuned LC-VCO and a fully-differential charge pump are adopted in the PLL design. The designed circuits are simulated in a 0.18gm 1P6M CMOS process. The power consumption of the PLL is only about llmW with the low power consideration in building blocks design, and the data rate of the modulator can reach 2Mb/s.展开更多
A systematic scheme is proposed to automatically extract geometric surface features from a point cloud composed of a set of unorganized three-dimensional coordinate points by data segmentation. The key technology is a...A systematic scheme is proposed to automatically extract geometric surface features from a point cloud composed of a set of unorganized three-dimensional coordinate points by data segmentation. The key technology is a algorithm that estimates the local surface curvature properties of scattered point data based on local base surface parameterization. Eight surface types from the signs of the Gaussian and mean curvatures provide an initial segmentation, which will be refined by an iterative region growing method. Experimental results show the scheme's performance on two point clouds.展开更多
The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the co...The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the computing process is complex with many cycles, which has greatly affected the computing efficiency. To improve the computing efficiency, this paper introduces Gaussian integral to the numerical calculation of the frequency-domain Green function and its partial derivatives. It then compares the calculation result with that in existing references. The comparison results demonstrate that, on the basis of its sufficient accuracy, the method has greatly simplified the computing process, reduced the zoning and improved the computing efficiency.展开更多
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ...Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.展开更多
By the use of cross-correlation measures, the response of a symmetric Schmitt trigger (ST) driven by a random binary signal and white Gaussian noise is investigated. The results show that the information transmission...By the use of cross-correlation measures, the response of a symmetric Schmitt trigger (ST) driven by a random binary signal and white Gaussian noise is investigated. The results show that the information transmission can be enhanced when a certain amount of noise is presented, i.e., aperiodic stochastic resonance (ASR). Then, the influence of signal amplitude and the ST threshold on ASR is examined, the applicability of the ST in reducing the noise level of random signal transmission and improving the quality of output signal via ASR effect is illustrated. This research is of great interest in the field of digital communications.展开更多
A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional G...A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional Gaussian noise and a white noise through bond and through space coordinates respectively, and introduce the coupling effect coming from both fluctuations and equilibrium variances. The general expressions for autocorrelation functions of distance fluctuation and fluorescence lifetime variation are derived, based on which the exact conformational change dynamics can be evaluated with the aid of numerical Laplace inversion technique. We explicitly elaborate the short time and long time approximations. The relationship between the two-diraensional description and the one-dimensional theory is also discussed.展开更多
In the South China Sea(SCS), the subsurface chlorophyll maximum(SCM) is frequently observed while the mechanisms of SCM occurrence have not been well understood. In this study, a 1-D physical-biochemical coupled model...In the South China Sea(SCS), the subsurface chlorophyll maximum(SCM) is frequently observed while the mechanisms of SCM occurrence have not been well understood. In this study, a 1-D physical-biochemical coupled model was used to study the seasonal variations of vertical profiles of chlorophyll-a(Chl-a) in the SCS. Three parameters(i.e., SCM layer(SCML) depth, thickness, and intensity) were defined to characterize the vertical distribution of Chl-a in SCML and were obtained by fitting the vertical profile of Chl-a in the subsurface layer using a Gaussian function. The seasonal variations of SCMs are reproduced reasonably well compared to the observations. The annual averages of SCML depth, thickness, and intensity are 75 ± 10 m, 31 ± 6.7 m, and 0.37 ± 0.11 mg m-3, respectively. A thick, close to surface SCML together with a higher intensity occurs during the northeastern monsoon. Both the SCML thickness and intensity are sensitive to the changes of surface wind speed in winter and summer, but the surface wind speed exerts a minor influence on the SCML depth; for example, double strengthening of the southwestern monsoon in summer can lead to the thickening of SCML by 46%, the intensity decreasing by 30%, and the shoaling by 6%. This is because part of nutrients are pumped from the upper nutricline to the surface mixed layer by strong vertical mixing. Increasing initial nutrient concentrations by two times will increase the intensity of SCML by over 80% in winter and spring. The sensitivity analysis indicates that light attenuation is critical to the three parameters of SCM. Decreasing background light attenuation by 20% extends the euphotic zone, makes SCML deeper(~20%) and thicker(12% – 41%), and increases the intensity by over 16%. Overall, the depth of SCML is mainly controlled by light attenuation, and the SCML thickness and intensity are closely associated with wind and initial nitrate concentration in the SCS.展开更多
Aiming at the inaccurate transmission estimation problem of dark channel prior image dehazing algorithm in the sudden change area of depth of field and sky area,a dehazing algorithm using adaptive dark channel fusion ...Aiming at the inaccurate transmission estimation problem of dark channel prior image dehazing algorithm in the sudden change area of depth of field and sky area,a dehazing algorithm using adaptive dark channel fusion and sky compensation is proposed.Firstly,according to the characteristics of minimum filtering of large window scale and small window scale in the dark channel prior,the fused dark channel is obtained by weighted fusion of the approximate depth of field relationship,thus obtaining the primary transmission.Secondly,use the down-sampling to optimize the primary transmission combined with gray scale image of haze image by fast joint bilateral filtering,then restore the original image size by up-sampling,and the compensation of the Gaussian function is used in the sky area to obtain corrected transmission.Finally,the improved atmospheric light is combined with atmospheric scattering model to recover haze-free image.Experimental results show that the algorithm can recover a large amount of detailed information of the image,obtain high visibility,and effectively eliminate the halo effect.At the same time,it has a better recovery effect on bright areas such as the sky area.展开更多
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi...To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.展开更多
Most existing algorithms for the underdetermined blind source separation(UBSS) problem are two-stage algorithm, i.e., mixing parameters estimation and sources estimation. In the mixing parameters estimation, the previ...Most existing algorithms for the underdetermined blind source separation(UBSS) problem are two-stage algorithm, i.e., mixing parameters estimation and sources estimation. In the mixing parameters estimation, the previously proposed traditional clustering algorithms are sensitive to the initializations of the mixing parameters. To reduce the sensitiveness to the initialization, we propose a new algorithm for the UBSS problem based on anechoic speech mixtures by employing the visual information, i.e., the interaural time difference(ITD) and the interaural level difference(ILD), as the initializations of the mixing parameters. In our algorithm, the video signals are utilized to estimate the distances between microphones and sources, and then the estimations of the ITD and ILD can be obtained. With the sparsity assumption in the time-frequency domain, the Gaussian potential function algorithm is utilized to estimate the mixing parameters by using the ITDs and ILDs as the initializations of the mixing parameters. And the time-frequency masking is used to recover the sources by evaluating the various ITDs and ILDs. Experimental results demonstrate the competitive performance of the proposed algorithm compared with the baseline algorithms.展开更多
文摘A CMOS fully-differential 2.4GHz ∑-△ frequency synthesizer for Gaussian minimum shift keying (GMSK)modulation is presented. A pre-compensation fractional-N phase-locked loop(PLL)is adopted in the modulator.The transfer function of the type- Ⅱ third-order phase-locked loop is deduced,and the important parameters that affect the loop transfer function are pointed out. Methods to calibrate the important loop parameters arc introduced. A differential tuned LC-VCO and a fully-differential charge pump are adopted in the PLL design. The designed circuits are simulated in a 0.18gm 1P6M CMOS process. The power consumption of the PLL is only about llmW with the low power consideration in building blocks design, and the data rate of the modulator can reach 2Mb/s.
文摘A systematic scheme is proposed to automatically extract geometric surface features from a point cloud composed of a set of unorganized three-dimensional coordinate points by data segmentation. The key technology is a algorithm that estimates the local surface curvature properties of scattered point data based on local base surface parameterization. Eight surface types from the signs of the Gaussian and mean curvatures provide an initial segmentation, which will be refined by an iterative region growing method. Experimental results show the scheme's performance on two point clouds.
基金Supported by the National Natural Science Foundation of China under Grant No.50779007the National Science Foundation for Young Scientists of China under Grant No.50809018+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070217074the Defence Advance Research Program of Science and Technology of Ship Industry under Grant No.07J1.1.6Harbin Engineering University Foundation under Grant No.HEUFT07069
文摘The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the computing process is complex with many cycles, which has greatly affected the computing efficiency. To improve the computing efficiency, this paper introduces Gaussian integral to the numerical calculation of the frequency-domain Green function and its partial derivatives. It then compares the calculation result with that in existing references. The comparison results demonstrate that, on the basis of its sufficient accuracy, the method has greatly simplified the computing process, reduced the zoning and improved the computing efficiency.
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552)the American Chemical Society Petroleum Research Foundation (No.PRF-44468-G9)+3 种基金the Research Fellowship for International Young Scientists (No.51050110143)the Fok Ying-Tong Education Foundation (No.114024)the Natural Science Foundation of Jiangsu Province (No.BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)
文摘Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.
文摘By the use of cross-correlation measures, the response of a symmetric Schmitt trigger (ST) driven by a random binary signal and white Gaussian noise is investigated. The results show that the information transmission can be enhanced when a certain amount of noise is presented, i.e., aperiodic stochastic resonance (ASR). Then, the influence of signal amplitude and the ST threshold on ASR is examined, the applicability of the ST in reducing the noise level of random signal transmission and improving the quality of output signal via ASR effect is illustrated. This research is of great interest in the field of digital communications.
基金This work was supported by the National Natural Science Foundation of China (No.20973119 and No.21033008).
文摘A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change, compatible to the electron transfer process governed by atomic packing density model. We assume a fractional Gaussian noise and a white noise through bond and through space coordinates respectively, and introduce the coupling effect coming from both fluctuations and equilibrium variances. The general expressions for autocorrelation functions of distance fluctuation and fluorescence lifetime variation are derived, based on which the exact conformational change dynamics can be evaluated with the aid of numerical Laplace inversion technique. We explicitly elaborate the short time and long time approximations. The relationship between the two-diraensional description and the one-dimensional theory is also discussed.
基金supported by the National Natural Science Foundation of China (Nos. 41106007, 41210008)the China Postdoctoral Science Foundation (No. 2013M 541958)the International Cooperation Project of China (No. 2010DFA91350)
文摘In the South China Sea(SCS), the subsurface chlorophyll maximum(SCM) is frequently observed while the mechanisms of SCM occurrence have not been well understood. In this study, a 1-D physical-biochemical coupled model was used to study the seasonal variations of vertical profiles of chlorophyll-a(Chl-a) in the SCS. Three parameters(i.e., SCM layer(SCML) depth, thickness, and intensity) were defined to characterize the vertical distribution of Chl-a in SCML and were obtained by fitting the vertical profile of Chl-a in the subsurface layer using a Gaussian function. The seasonal variations of SCMs are reproduced reasonably well compared to the observations. The annual averages of SCML depth, thickness, and intensity are 75 ± 10 m, 31 ± 6.7 m, and 0.37 ± 0.11 mg m-3, respectively. A thick, close to surface SCML together with a higher intensity occurs during the northeastern monsoon. Both the SCML thickness and intensity are sensitive to the changes of surface wind speed in winter and summer, but the surface wind speed exerts a minor influence on the SCML depth; for example, double strengthening of the southwestern monsoon in summer can lead to the thickening of SCML by 46%, the intensity decreasing by 30%, and the shoaling by 6%. This is because part of nutrients are pumped from the upper nutricline to the surface mixed layer by strong vertical mixing. Increasing initial nutrient concentrations by two times will increase the intensity of SCML by over 80% in winter and spring. The sensitivity analysis indicates that light attenuation is critical to the three parameters of SCM. Decreasing background light attenuation by 20% extends the euphotic zone, makes SCML deeper(~20%) and thicker(12% – 41%), and increases the intensity by over 16%. Overall, the depth of SCML is mainly controlled by light attenuation, and the SCML thickness and intensity are closely associated with wind and initial nitrate concentration in the SCS.
基金National Natural Science Foundation of China(No.61561030)Natural Science Foundation of Science and Technology Department of Gansu Province(No.1310RJZA050)Basic Research Projects Supported by Operating Expenses of Finance Department of Gansu Province(No.214138)。
文摘Aiming at the inaccurate transmission estimation problem of dark channel prior image dehazing algorithm in the sudden change area of depth of field and sky area,a dehazing algorithm using adaptive dark channel fusion and sky compensation is proposed.Firstly,according to the characteristics of minimum filtering of large window scale and small window scale in the dark channel prior,the fused dark channel is obtained by weighted fusion of the approximate depth of field relationship,thus obtaining the primary transmission.Secondly,use the down-sampling to optimize the primary transmission combined with gray scale image of haze image by fast joint bilateral filtering,then restore the original image size by up-sampling,and the compensation of the Gaussian function is used in the sky area to obtain corrected transmission.Finally,the improved atmospheric light is combined with atmospheric scattering model to recover haze-free image.Experimental results show that the algorithm can recover a large amount of detailed information of the image,obtain high visibility,and effectively eliminate the halo effect.At the same time,it has a better recovery effect on bright areas such as the sky area.
文摘To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.
基金supported by the National Natural Science Foundation of China(Grant Nos.61162014,61210306074)the Natural Science Foundation of Jiangxi Province of China(Grant No.20122BAB201025)the Foundation for Young Scientists of Jiangxi Province(Jinggang Star)(Grant No.20122BCB23002)
文摘Most existing algorithms for the underdetermined blind source separation(UBSS) problem are two-stage algorithm, i.e., mixing parameters estimation and sources estimation. In the mixing parameters estimation, the previously proposed traditional clustering algorithms are sensitive to the initializations of the mixing parameters. To reduce the sensitiveness to the initialization, we propose a new algorithm for the UBSS problem based on anechoic speech mixtures by employing the visual information, i.e., the interaural time difference(ITD) and the interaural level difference(ILD), as the initializations of the mixing parameters. In our algorithm, the video signals are utilized to estimate the distances between microphones and sources, and then the estimations of the ITD and ILD can be obtained. With the sparsity assumption in the time-frequency domain, the Gaussian potential function algorithm is utilized to estimate the mixing parameters by using the ITDs and ILDs as the initializations of the mixing parameters. And the time-frequency masking is used to recover the sources by evaluating the various ITDs and ILDs. Experimental results demonstrate the competitive performance of the proposed algorithm compared with the baseline algorithms.