期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于高斯混合模型的遥感影像连续型朴素贝叶斯网络分类器 被引量:10
1
作者 陶建斌 舒宁 沈照庆 《遥感信息》 CSCD 2010年第2期18-24,29,共8页
提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的... 提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。 展开更多
关键词 朴素贝叶斯分类器 高斯混合模型 EM算法 高斯 遥感影像 分类
下载PDF
基于高斯密度的一阶贝叶斯衍生分类器 被引量:1
2
作者 杜瑞杰 王双成 高瑞 《计算机应用研究》 CSCD 北大核心 2015年第11期3242-3246,共5页
针对连续属性朴素贝叶斯分类器不能有效利用属性之间的条件依赖信息,而目前所进行的依赖扩展更关注效率,这使得扩展后分类器的分类准确性还有待提高等问题,使用高斯密度估计属性密度,将属性排序、分类准确性标准与属性父节点的贪婪选择... 针对连续属性朴素贝叶斯分类器不能有效利用属性之间的条件依赖信息,而目前所进行的依赖扩展更关注效率,这使得扩展后分类器的分类准确性还有待提高等问题,使用高斯密度估计属性密度,将属性排序、分类准确性标准与属性父节点的贪婪选择结合,综合考虑效率和分类准确性,对朴素贝叶斯分类器进行依赖扩展,建立一阶贝叶斯衍生分类器,并对属性分类提供的信息进行分析。实验结果显示,基于高斯密度的一阶贝叶斯衍生分类器具有良好的分类准确性。 展开更多
关键词 朴素贝叶斯分类器 高斯函数 贝叶斯网络 依赖扩展 分类准确性
下载PDF
基于非下采样轮廓波变换和朴素贝叶斯分类器的织物缺陷检测 被引量:6
3
作者 郝磐霞 景军锋 +2 位作者 张蕾 张宏伟 王晓华 《纺织高校基础科学学报》 CAS 2017年第1期134-141,147,共9页
为检测织物生产过程中产生的缺陷,提出一种非下采样轮廓波变换(nonsubsampled contourlet transform,NSCT)和朴素贝叶斯分类器(naive Bayes classifier,NBC)相结合的缺陷检测算法.该方法分为2个阶段:学习阶段和检测阶段.在学习阶段,分... 为检测织物生产过程中产生的缺陷,提出一种非下采样轮廓波变换(nonsubsampled contourlet transform,NSCT)和朴素贝叶斯分类器(naive Bayes classifier,NBC)相结合的缺陷检测算法.该方法分为2个阶段:学习阶段和检测阶段.在学习阶段,分别提取有缺陷和无缺陷织物的子块集合,首先利用NSCT进行滤波去噪;然后提取每个子块的广义高斯分布的混合(mixture of the generalized Gaussion distribution,MoGG)模型,并计算子块之间的相对熵(kullbackleibler divergence,KLD);最后利用得到的数据训练NBC.在检测阶段,将待检测图像分割成子块,利用经过训练的NBC检测子块,输出缺陷检测结果.实验结果表明,该算法对于灰度均匀织物及净色纹理织物的缺陷检测均具有良好效果,并且利用该算法可以检测出多种缺陷类型,检测精度可达到97%,能满足工业生产需求. 展开更多
关键词 非下采样轮廓波变换 朴素贝叶斯分类器 广义高斯分布的混合模型
下载PDF
动态朴素贝叶斯网络分类器的特征子集选择 被引量:1
4
作者 余民杰 王双成 杜瑞杰 《计算机应用与软件》 CSCD 北大核心 2012年第2期57-59,共3页
分类准确性是分类器最重要的性能指标,特征子集选择是提高分类器分类准确性的一种有效方法。现有的特征子集选择方法主要针对静态分类器,缺少动态分类器特征子集选择方面的研究。首先给出具有连续属性的动态朴素贝叶斯网络分类器和动态... 分类准确性是分类器最重要的性能指标,特征子集选择是提高分类器分类准确性的一种有效方法。现有的特征子集选择方法主要针对静态分类器,缺少动态分类器特征子集选择方面的研究。首先给出具有连续属性的动态朴素贝叶斯网络分类器和动态分类准确性评价标准,在此基础上建立动态朴素贝叶斯网络分类器的特征子集选择方法,并使用真实宏观经济时序数据进行实验与分析。 展开更多
关键词 动态朴素贝叶斯网络 分类器 特征子集选择 高斯核函数
下载PDF
基于三对角矩阵的完全贝叶斯分类器研究 被引量:1
5
作者 冷翠平 王双成 杜瑞杰 《计算机应用研究》 CSCD 北大核心 2015年第3期740-742,747,共4页
针对连续属性朴素贝叶斯分类器不能有效利用属性之间的条件依赖信息、而对其进行依赖扩展中的高阶协方差矩阵的求逆和行列式运算又非常困难等问题,将三对角矩阵和多元高斯函数相结合,建立连续属性完全贝叶斯分类器,并在三对角矩阵中引... 针对连续属性朴素贝叶斯分类器不能有效利用属性之间的条件依赖信息、而对其进行依赖扩展中的高阶协方差矩阵的求逆和行列式运算又非常困难等问题,将三对角矩阵和多元高斯函数相结合,建立连续属性完全贝叶斯分类器,并在三对角矩阵中引入平滑参数,通过对平滑参数的调整来实现分类器的优化。使用UCI数据的实验结果显示,经过优化的连续属性完全贝叶斯分类器具有良好的分类准确性。 展开更多
关键词 朴素贝叶斯分类器 完全贝叶斯分类器 多元高斯函数 三对角矩阵 平滑参数
下载PDF
基于贝叶斯网络分类器的财务信息失真识别研究 被引量:1
6
作者 姚衡 高瑞 王双成 《新会计》 2015年第6期37-40,共4页
企业财务信息失真识别越来越多地受到关注。本文使用条件高斯函数代替边缘高斯函数的乘积进行叠加,给出新的多元高斯核函数,在此基础上,建立扩展的连续属性朴素贝叶斯分类器,并将该分类器用于企业财务信息失真识别,实验结果显示,这种分... 企业财务信息失真识别越来越多地受到关注。本文使用条件高斯函数代替边缘高斯函数的乘积进行叠加,给出新的多元高斯核函数,在此基础上,建立扩展的连续属性朴素贝叶斯分类器,并将该分类器用于企业财务信息失真识别,实验结果显示,这种分类器具有良好的分类性能。 展开更多
关键词 财务信息失真识别 朴素贝叶斯分类器 高斯函数 贝叶斯网络 依赖扩展
下载PDF
基于朴素贝叶斯与半朴素贝叶斯图像识别比较 被引量:2
7
作者 刘闯 《信息技术与网络安全》 2018年第12期44-47,共4页
将朴素贝叶斯分类器用于人体行为图像识别之中,利用高斯模糊、灰度化处理、二值化处理、直方统计函数等图像处理技术对图像数据进行约简、特征提取,然后使用朴素贝叶斯与半朴素贝叶斯对数据进行测试。利用KTH数据库做了两组对比实验,对... 将朴素贝叶斯分类器用于人体行为图像识别之中,利用高斯模糊、灰度化处理、二值化处理、直方统计函数等图像处理技术对图像数据进行约简、特征提取,然后使用朴素贝叶斯与半朴素贝叶斯对数据进行测试。利用KTH数据库做了两组对比实验,对朴素贝叶斯分类器和半朴素贝叶斯分类器的性能做了比较。实验结果表明,半朴素贝叶斯分类器比朴素贝叶斯分类器分类能力强,但与此同时,半朴素贝叶斯分类器计算所花费的时间比朴素贝叶斯分类器更多。 展开更多
关键词 朴素贝叶斯分类器 朴素贝叶斯分类器 高斯模糊 二值化 特征提取
下载PDF
基于高斯核函数的朴素贝叶斯分类器依赖扩展 被引量:5
8
作者 王双成 高瑞 杜瑞杰 《控制与决策》 EI CSCD 北大核心 2015年第12期2280-2284,共5页
朴素贝叶斯分类器不能有效地利用属性之间的依赖信息,而目前所进行的依赖扩展更强调效率,使扩展后分类器的分类准确性还有待提高.针对以上问题,在使用具有平滑参数的高斯核函数估计属性密度的基础上,结合分类器的分类准确性标准和属性... 朴素贝叶斯分类器不能有效地利用属性之间的依赖信息,而目前所进行的依赖扩展更强调效率,使扩展后分类器的分类准确性还有待提高.针对以上问题,在使用具有平滑参数的高斯核函数估计属性密度的基础上,结合分类器的分类准确性标准和属性父结点的贪婪选择,进行朴素贝叶斯分类器的网络依赖扩展.使用UCI中的连续属性分类数据进行实验,结果显示网络依赖扩展后的分类器具有良好的分类准确性. 展开更多
关键词 朴素贝叶斯分类器 高斯核函数 贝叶斯网络 分类准确性 依赖扩展
原文传递
利用ELM-AE和迁移表征学习构建的目标跟踪系统 被引量:1
9
作者 杨政 邓赵红 +2 位作者 罗晓清 顾鑫 王士同 《计算机科学与探索》 CSCD 北大核心 2022年第7期1633-1648,共16页
在目标跟踪算法中,特征模型对图像特征的快速学习能力和对跟踪过程中目标特征变化的自适应能力一直是目标跟踪算法的主要研究方向之一。特别是对于基于图像块学习的判别式目标跟踪器而言,这两点已然成为影响跟踪器效率和鲁棒性的决定性... 在目标跟踪算法中,特征模型对图像特征的快速学习能力和对跟踪过程中目标特征变化的自适应能力一直是目标跟踪算法的主要研究方向之一。特别是对于基于图像块学习的判别式目标跟踪器而言,这两点已然成为影响跟踪器效率和鲁棒性的决定性因素。然而,现有的大多数同类算法在这两个能力上的性能并不能达到令人满意的效果。为了解决这一问题,提出了一种高效且鲁棒的特征模型。该特征模型首先利用基于极限学习机的自编码器(ELM-AE)对目标和背景图像块的复杂图像特征快速地进行随机特征映射,再利用迁移表征学习(TRL)的迁移学习能力提高随机特征空间的自适应性。将该特征模型命名为基于ELM自编码器和迁移表征学习的特征模型(TRL-ELM-AE)。与原复杂图像特征相比,通过该模型可以获得更加紧凑且具有表达能力的共享特征。从而使得分类器可以快速高效地学习和分类。此外,在目标跟踪过程中,目标与背景通常会随着时间不停地变化。虽然TRL的特征迁移能力已经可以很好地适应这一点,但是为了进一步提高跟踪器的鲁棒性,还采用了一种动态更新训练样本的策略。通过对OTB提出的11项目标跟踪挑战场景进行大量实验和分析,证明了所提的目标跟踪器较现有的目标跟踪器具有显著优势。 展开更多
关键词 极限学习机(ELM) 极限学习机自编码器(ELM-AE) 迁移表征学习(TRL) 特征自适应 高斯朴素贝叶斯分类器(gnbc) 目标跟踪
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部