二维线积分卷积(Line Integral Convolution,LIC)绘制技术通过纹理线条和颜色变化能够细致、有效地表现二维矢量场的速度、方向以及数据相关性等特征信息,但二维LIC绘制方式扩展到三维矢量场时,由于三维矢量场本身的空间特性容易造成纹...二维线积分卷积(Line Integral Convolution,LIC)绘制技术通过纹理线条和颜色变化能够细致、有效地表现二维矢量场的速度、方向以及数据相关性等特征信息,但二维LIC绘制方式扩展到三维矢量场时,由于三维矢量场本身的空间特性容易造成纹理单元之间产生严重的视线遮挡问题,影响对三维矢量场内部特征的观察分析。提出了一种基于稀疏噪声纹理生成的Volume LIC可视化方法,对于普通的白噪声采用Halton序列控制噪声点分布,并通过高斯滤波核滤除高频区域来生成稀疏高斯噪声。在LIC纹理计算中滤波卷积部分提供了两种核函数:基于盒形卷积核函数用于提高卷积速度,基于三角形卷积核函数用于提高绘制质量。整体算法采用GPU硬件加速机制,在噪声纹理采样时利用GPU顶点颜色线性插值功能和片元计算方法有效加速LIC纹理生成过程,并将卷积噪声和流场数据作为纹理传入GPU,采用光线投射算法加速实现纹理三维绘制显示,提供多种有效的交互分析手段查看流场内部特征。实验结果表明该算法生成的三维纹理图像清晰,绘制效率高,能够有效缓解三维复杂流场卷积数据过多时引起的视线遮挡现象,具备良好的可视化效果。展开更多
文摘二维线积分卷积(Line Integral Convolution,LIC)绘制技术通过纹理线条和颜色变化能够细致、有效地表现二维矢量场的速度、方向以及数据相关性等特征信息,但二维LIC绘制方式扩展到三维矢量场时,由于三维矢量场本身的空间特性容易造成纹理单元之间产生严重的视线遮挡问题,影响对三维矢量场内部特征的观察分析。提出了一种基于稀疏噪声纹理生成的Volume LIC可视化方法,对于普通的白噪声采用Halton序列控制噪声点分布,并通过高斯滤波核滤除高频区域来生成稀疏高斯噪声。在LIC纹理计算中滤波卷积部分提供了两种核函数:基于盒形卷积核函数用于提高卷积速度,基于三角形卷积核函数用于提高绘制质量。整体算法采用GPU硬件加速机制,在噪声纹理采样时利用GPU顶点颜色线性插值功能和片元计算方法有效加速LIC纹理生成过程,并将卷积噪声和流场数据作为纹理传入GPU,采用光线投射算法加速实现纹理三维绘制显示,提供多种有效的交互分析手段查看流场内部特征。实验结果表明该算法生成的三维纹理图像清晰,绘制效率高,能够有效缓解三维复杂流场卷积数据过多时引起的视线遮挡现象,具备良好的可视化效果。