期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
基于高斯混合模型聚类的双馈风电场动态等值建模方法 被引量:2
1
作者 邓俊 张阳 +3 位作者 李怡然 夏楠 戚正浩 高桐 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期342-350,共9页
针对风电场动态运行条件下等值建模精度偏低、聚类依据不足的难题,提出一种基于高斯混合模型聚类思想的风电场等值建模方法。首先,分析单台双馈感应式风力发电机在低电压穿越期间的动态响应特性,根据响应特性的集群特征构建聚类指标。然... 针对风电场动态运行条件下等值建模精度偏低、聚类依据不足的难题,提出一种基于高斯混合模型聚类思想的风电场等值建模方法。首先,分析单台双馈感应式风力发电机在低电压穿越期间的动态响应特性,根据响应特性的集群特征构建聚类指标。然后,提出基于高斯混合模型动态初步聚类、优化聚类数目的两阶段等值建模方法,推导出赤池信息和贝叶斯信息准则下聚类数目的寻优算法。以典型中等规模风电场为例,在Matlab/Simulink平台进行不同故障穿越条件的仿真测试,结果表明所提风电场等值建模方法聚类有效、精度高。 展开更多
关键词 风电场 低电压穿越 风速 双馈风力发电机 高斯混合模型 等值建模
下载PDF
基于高斯混合聚类的综合物探方法及其在岩溶勘探中的应用
2
作者 何文 高斌 +2 位作者 王强强 冯少孔 叶冠林 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第11期1724-1734,共11页
综合物探是一种有效的岩溶勘探技术,但其预测结果中存在人为影响大、溶洞边界模糊等缺点.首先,基于机器学习技术,采用高斯混合模型,分别对高密度电法和面波法勘探数据做分类处理;然后,提出Category-boundary算法,进一步细分上述分类得... 综合物探是一种有效的岩溶勘探技术,但其预测结果中存在人为影响大、溶洞边界模糊等缺点.首先,基于机器学习技术,采用高斯混合模型,分别对高密度电法和面波法勘探数据做分类处理;然后,提出Category-boundary算法,进一步细分上述分类得到的边界,提高高斯混合模型分类精度;最后,根据专家经验与地勘资料制定分类融合规则,在勘察数据驱动和工程地质知识引导的有机结合下,形成一套综合物探的高精度分类融合新方法.将新方法应用于浙南某岩溶勘探工程,获得了边界清晰的溶洞探测结果,与实际钻孔信息对比高度吻合,验证了新方法的有效性. 展开更多
关键词 综合物探技术 高斯混合 融合 岩溶勘探 机器学习
下载PDF
基于高斯混合模型的期望最大化聚类算法 被引量:9
3
作者 尹楠 《统计与决策》 CSSCI 北大核心 2017年第4期87-89,共3页
文章介绍了基于高斯混合模型的期望最大化聚类算法,并对模型进行了简化,运用案例分析了该模型在经济管理领域中的应用,利用可视化的图形展示了研究样本的概率密度。
关键词 高斯混合模型 概率密度
下载PDF
基于改进高斯混合模型的变电站负荷聚类算法
4
作者 余浩 高镱滈 +3 位作者 潘险险 徐衍会 李雪松 孙宇航 《全球能源互联网》 CSCD 北大核心 2024年第5期591-601,共11页
针对传统高斯混合模型(Gaussian mixture model,GMM)聚类算法中计算复杂、收敛速度慢和人为确定聚类数目时存在盲目性和主观性等不足,提出了一种基于改进GMM的变电站负荷聚类算法。以传统GMM聚类算法为基础,采用k均值(k-means)算法确定... 针对传统高斯混合模型(Gaussian mixture model,GMM)聚类算法中计算复杂、收敛速度慢和人为确定聚类数目时存在盲目性和主观性等不足,提出了一种基于改进GMM的变电站负荷聚类算法。以传统GMM聚类算法为基础,采用k均值(k-means)算法确定初始聚类中心。减少了GMM聚类算法迭代步骤,提高了输出结果的稳定性。输出不同聚类数下聚类结果的Davies-Bouldin(DB)指标、CalinskiHarabasz(CH)指标和轮廓系数(silhouette coefficient,SC),应用熵权法确定不同评价指标所占权重,构建聚类评价混合指数(cluster evaluation mixed index,CEM)。将聚类评价混合指数最大值对应的聚类个数作为最佳聚类数目,再次输入到改进GMM聚类算法中,得到变电站负荷聚类结果和聚类中心。结果表明,所提方法增强了传统GMM聚类算法的计算速度和稳定性,对变电站负荷具有良好的聚类综合能力,有助于实现聚类结果最优化。 展开更多
关键词 高斯混合模型 负荷分 算法 评价
下载PDF
基于高斯混合模型的分布因子聚类方法
5
作者 朱映秋 黄丹阳 张波 《统计研究》 CSSCI 北大核心 2024年第6期147-160,共14页
随着信息技术的发展,人类社会产生的数据规模越来越庞大、形式越来越复杂,对聚类分析形成了巨大挑战。在越来越多的应用场景中,观测数据具有相互关联、层次嵌套的结构,使传统聚类方法难以直接适用。通常的解决方案是采用特征工程方法将... 随着信息技术的发展,人类社会产生的数据规模越来越庞大、形式越来越复杂,对聚类分析形成了巨大挑战。在越来越多的应用场景中,观测数据具有相互关联、层次嵌套的结构,使传统聚类方法难以直接适用。通常的解决方案是采用特征工程方法将观测信息压缩为低维特征向量进行聚类,但这将带来不可避免的信息损失。为充分利用观测数据,本文以分布函数表示聚类对象,大幅降低信息损失,进而提出基于高斯混合模型的分布因子模型。该模型将聚类对象的观测数据分解为两部分,一是以高斯成分表示的公共因子,反映数据中具有共性的典型模式;二是载荷矩阵,矩阵中每个载荷向量反映个体的异质性特征。估计得到载荷向量后即可对不同个体实现聚类划分。本文提出的方法具有优良的统计学效率,能够证明在一定假设条件下聚类误差率能够随着观测个体数目的发散而趋近于0。基于模拟数据和股票收益、大气污染实际数据的实验表明,该方法能够区分具有不同特征模式的个体,解决多维数据的分布函数聚类问题,并为金融风险管理、空气质量的差异化治理等现实问题提供决策支持。 展开更多
关键词 分布函数 高斯混合模型 复杂数据
下载PDF
基于2dSVD和高斯混合模型的多变量时间序列聚类
6
作者 杨秋颖 翁小清 《计算机应用与软件》 北大核心 2024年第3期283-289,327,共8页
针对多变量时间序列(MTS)存在时间和变量两个维度,以及传统主成分分析(PCA)方法在MTS数据表示上的局限性,提出一种基于二维奇异值分解(2dSVD)和高斯混合模型(GMM)的MTS聚类算法。该文计算MTS的行-行和列-列协方差矩阵的特征向量,从时间... 针对多变量时间序列(MTS)存在时间和变量两个维度,以及传统主成分分析(PCA)方法在MTS数据表示上的局限性,提出一种基于二维奇异值分解(2dSVD)和高斯混合模型(GMM)的MTS聚类算法。该文计算MTS的行-行和列-列协方差矩阵的特征向量,从时间和变量两个维度提取特征矩阵;用GMM从概率分布角度对特征矩阵进行聚类。数值实验结果表明,该方法对多变量时间序列具有更好的聚类效果。 展开更多
关键词 二维奇异值分解 高斯混合模型 多变量时间序列
下载PDF
嵌套删失数据期望最大化的高斯混合聚类算法 被引量:5
7
作者 余海燕 陈京京 +2 位作者 邱航 王永 王若凡 《自动化学报》 EI CAS CSCD 北大核心 2021年第6期1302-1314,共13页
针对聚类问题中的非随机性缺失数据,本文基于高斯混合聚类模型,分析了删失型数据期望最大化算法的有效性,并揭示了删失数据似然函数对模型算法的作用机制.从赤池弘次信息准则、信息散度等指标,比较了所提出方法与标准的期望最大化算法... 针对聚类问题中的非随机性缺失数据,本文基于高斯混合聚类模型,分析了删失型数据期望最大化算法的有效性,并揭示了删失数据似然函数对模型算法的作用机制.从赤池弘次信息准则、信息散度等指标,比较了所提出方法与标准的期望最大化算法的优劣性.通过删失数据划分及指示变量,推导了聚类模型参数后验概率及似然函数,调整了参数截尾正态函数的一阶和二阶估计量.并根据估计算法的有效性理论,通过关于得分向量期望的方程得出算法估计的最优参数.对于同一删失数据集,所提出的聚类算法对数据聚类中心估计更精准.实验结果证实了所提出算法在高斯混合聚类的性能上优于标准的随机性缺失数据期望最大化算法. 展开更多
关键词 高斯混合 删失数据 期望最大化算法 截尾正态函数 二阶估计量
下载PDF
联合手肘法和期望最大化的高斯混合聚类电力系统客户分群算法 被引量:29
8
作者 陈聿 田博今 +1 位作者 彭云竹 廖勇 《计算机应用》 CSCD 北大核心 2020年第11期3217-3223,共7页
为进一步提升电力系统客户的用户体验,针对现有聚类算法寻优能力差、紧凑性不足以及较难求解聚类数目最优值的问题,提出一种联合手肘法与期望最大化(EM)的高斯混合聚类算法,挖掘大量客户数据中的潜在信息。该算法通过EM算法迭代出良好... 为进一步提升电力系统客户的用户体验,针对现有聚类算法寻优能力差、紧凑性不足以及较难求解聚类数目最优值的问题,提出一种联合手肘法与期望最大化(EM)的高斯混合聚类算法,挖掘大量客户数据中的潜在信息。该算法通过EM算法迭代出良好的聚类结果,而针对传统的高斯混合聚类算法需要提前获取用户分群数量的缺点,利用手肘法合理找出客户的分群数量。案例分析表明,所提算法与层次聚类算法和K-Means算法相比,FM、AR指标的增幅均超过10%,紧凑度(CI)和分离度(DS)的降幅分别低于15%和25%,可见性能有较大提升。 展开更多
关键词 电力系统 客户分群 高斯混合模型 精准服务 期望最大化 手肘法
下载PDF
基于高斯混合模型最大期望聚类的同时定位与地图构建数据关联 被引量:4
9
作者 阮晓钢 张晶晶 +1 位作者 朱晓庆 周静 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第2期265-274,共10页
数据关联是移动机器人同时定位与地图构建(SLAM)中状态估计的前提和基础,针对当前联合兼容分支定界算法存在计算复杂度高、耗时长的问题,提出了基于高斯混合模型(GMM)最大期望聚类分组的SLAM数据关联算法.首先,为减少同一时刻参与关联... 数据关联是移动机器人同时定位与地图构建(SLAM)中状态估计的前提和基础,针对当前联合兼容分支定界算法存在计算复杂度高、耗时长的问题,提出了基于高斯混合模型(GMM)最大期望聚类分组的SLAM数据关联算法.首先,为减少同一时刻参与关联的观测值数目,在局部区域内采用GMM最大期望聚类算法对当前时刻的观测值进行分组;其次,在各观测小组中采用联合兼容分支定界算法进行数据关联;最后,综合各观测小组的观测值同局部地图特征得到的关联解,得到最优的关联结果.仿真实验结果表明,基于高斯混合模型最大期望聚类分组的SLAM数据关联算法在保证数据关联准确度的前提下,计算复杂度得到了降低,缩短了运行时间. 展开更多
关键词 同时定位与地图构建 数据关联 联合兼容分支定界 高斯混合模型 最大期望 移动机器人
下载PDF
基于高斯混合模型的最大期望聚类算法研究 被引量:15
10
作者 何庆 易娜 +1 位作者 汪新勇 江立斌 《微型电脑应用》 2018年第5期50-52,75,共4页
聚类分析通过数据挖掘、机器学习技术,进行数据查找,传统聚类分析中串行方法的数据处理,要求处理内存大数据,CPU运算速度快,无法进行海量数据分析。高斯混合模型中概率密度函数,精确地处理海量数据,将其分配到各个混合成分中,实现精细... 聚类分析通过数据挖掘、机器学习技术,进行数据查找,传统聚类分析中串行方法的数据处理,要求处理内存大数据,CPU运算速度快,无法进行海量数据分析。高斯混合模型中概率密度函数,精确地处理海量数据,将其分配到各个混合成分中,实现精细化查找,并简化数据处理步骤。高斯混合模型利用最大期望(EM)算法进行参数评估,显著提高数据分析速度。基于最大期望聚类算法原理,对高斯混合模型进行优化,旨在实现海量数据的准确运算。高斯模型结合Hadoop平台中的海量数据进行算法分析,对大数据的可视化处理和样本分析提供帮助。研究结果显示:最大期望聚类算法可以进行海量数据分析,通过简化运算步骤,实现短时间内的数据查找、分析和处理。 展开更多
关键词 高斯混合模型 最大期望 算法
下载PDF
一种快速、鲁棒的有限高斯混合模型聚类算法 被引量:15
11
作者 胡庆辉 丁立新 +1 位作者 陆玉靖 何进荣 《计算机科学》 CSCD 北大核心 2013年第8期191-195,共5页
有限混合模型聚类是一种基于概率模型的有效聚类方法。针对高斯混合模型的聚类算法,分别对模型的成分混合系数及样本所属成分的概率系数施加熵惩罚算子,实现对模型成分数的两级控制,快速消除无效成分,使算法能在很少的迭代次数内收敛到... 有限混合模型聚类是一种基于概率模型的有效聚类方法。针对高斯混合模型的聚类算法,分别对模型的成分混合系数及样本所属成分的概率系数施加熵惩罚算子,实现对模型成分数的两级控制,快速消除无效成分,使算法能在很少的迭代次数内收敛到确定解。传统算法对初始值(成分数目c需事先指定)的设置非常敏感,容易导致EM算法陷入局部最优解或收敛到解空间的边界,而文中的算法对初始值的设定没有特殊的要求,实验证明其具有很好的鲁棒性。 展开更多
关键词 高斯混合模型 信息熵 EM算法
下载PDF
一种基于高斯混合模型的无监督粗糙聚类方法 被引量:8
12
作者 何明 冯博琴 +1 位作者 马兆丰 傅向华 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第2期256-259,322,共5页
针对数据统计分布的随机性和复杂性,从统计聚类的角度出发,采用高斯混合模型来描述整个数据的概率密度函数,提出了一种基于高斯混合模型的粗糙聚类分析方法.该方法首先利用粗糙集理论的不可区分关系性质以及生成的逻辑规则来设定EM算法... 针对数据统计分布的随机性和复杂性,从统计聚类的角度出发,采用高斯混合模型来描述整个数据的概率密度函数,提出了一种基于高斯混合模型的粗糙聚类分析方法.该方法首先利用粗糙集理论的不可区分关系性质以及生成的逻辑规则来设定EM算法的初始近似参数,然后通过Expectation-M axim ization(EM)算法估计各分量概率密度分布的最大似然参数集,最后通过密度分布概率大小来确定类别的归属.与传统的k-m eans聚类算法的试验结果比较表明,该方法是有效的,并且具有较高的聚类精度,用规则集来描述聚类的结果具有可解释性和合理性. 展开更多
关键词 高斯混合模型 粗糙集 EM算法
下载PDF
融合K-means与高斯混合模型的驾驶风格聚类研究 被引量:17
13
作者 刘通 付锐 +1 位作者 张名芳 田顺 《中国安全科学学报》 CAS CSCD 北大核心 2019年第12期40-45,共6页
为研究驾驶员的跟车特性,探究驾驶员风格划分方法,采集50名驾驶员的实车试验数据,选取平均跟车时距和平均制动时距为二维向量,建立基于K-means聚类结果的高斯混合模型(GMM)并分析不同风格驾驶员的聚类结果。研究表明:样本数据聚为3类时... 为研究驾驶员的跟车特性,探究驾驶员风格划分方法,采集50名驾驶员的实车试验数据,选取平均跟车时距和平均制动时距为二维向量,建立基于K-means聚类结果的高斯混合模型(GMM)并分析不同风格驾驶员的聚类结果。研究表明:样本数据聚为3类时的平均轮廓系数为0. 45,将驾驶员划分为冒进型、平稳型、保守型3类时聚类效果较好;冒进型驾驶员倾向于选择较小的跟车时距和制动时距,保守型驾驶员的跟车及制动时距则普遍较大,模型聚类结果更加柔性,样本区分度更高。 展开更多
关键词 驾驶风格 K-MEANS 高斯混合模型(GMM) 跟车特性 制动特点
下载PDF
基于高斯混合密度模型的医学图像聚类方法 被引量:6
14
作者 宋余庆 王春红 +1 位作者 陈健美 谢从华 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2009年第3期293-296,共4页
研究了医学图像的聚类问题,提出一种基于高斯混合密度模型的K-EM聚类算法,并将此算法用于人体腹部图像数据,实现肝、肾、脾等主要器官的分类.在算法中,随机选取腹部图像像素数据,用QAIC信息准则确定训练样本的最佳类别数;用K均值聚类算... 研究了医学图像的聚类问题,提出一种基于高斯混合密度模型的K-EM聚类算法,并将此算法用于人体腹部图像数据,实现肝、肾、脾等主要器官的分类.在算法中,随机选取腹部图像像素数据,用QAIC信息准则确定训练样本的最佳类别数;用K均值聚类算法得到混合模型的初始参数;用期望最大(EM)算法多次迭代建立腹部图像数据的混合密度模型;运用贝叶斯准则,将腹部图像所有像素值划分到混合模型中相应的模型分支,得到每个器官像素值划分的正确率与误判率.试验结果表明,新算法分类的平均正确率高于85%、误判率低于10%,优于K均值算法. 展开更多
关键词 医学图像 K均值 高斯混合模型 QAIC信息准则 EM算法 贝叶斯准则
下载PDF
邻域约束高斯混合模型的模糊聚类图像分割 被引量:6
15
作者 赵泉华 张洪云 +1 位作者 赵雪梅 李玉 《模式识别与人工智能》 EI CSCD 北大核心 2017年第3期214-223,共10页
针对传统模糊聚类分割方法无法有效模拟数据分布特征的问题,提出基于邻域约束高斯混合模型的模糊聚类图像分割算法.利用高斯分布刻画聚类内像素光谱测度统计特征,定义像素与其邻域像素相关性的先验概率,并作为高斯混合模型中各高斯分量... 针对传统模糊聚类分割方法无法有效模拟数据分布特征的问题,提出基于邻域约束高斯混合模型的模糊聚类图像分割算法.利用高斯分布刻画聚类内像素光谱测度统计特征,定义像素与其邻域像素相关性的先验概率,并作为高斯混合模型中各高斯分量权重系数,构建包含特征场邻域作用的高斯混合模型.利用高斯分量描述像素与聚类间的非相似性测度,建立基于高斯混合模型的模糊聚类目标函数.在传统模糊聚类方法基础上,采用高斯混合模型定义像素与聚类间的非相似性测度,并在高斯混合模型中融入邻域作用,有效解决数据具有多峰值特征的问题.最后通过实验验证文中算法的准确性. 展开更多
关键词 高斯混合模型(GMM) 邻域约束 模糊 图像分割
下载PDF
一种基于高斯混合模型的不确定数据流聚类方法 被引量:6
16
作者 曹振丽 孙瑞志 李勐 《计算机研究与发展》 EI CSCD 北大核心 2014年第S2期102-109,共8页
传感器的广泛应用产生了大量的不确定数据流,在聚类应用中,当输入数据为连续型随机变量时,现有基于离散型随机变量的聚类方法无法满足数据流应用在效率和精度上的要求.使用高斯混合模型作为不确定数据的基本表示形式,仅需要保存不同组... 传感器的广泛应用产生了大量的不确定数据流,在聚类应用中,当输入数据为连续型随机变量时,现有基于离散型随机变量的聚类方法无法满足数据流应用在效率和精度上的要求.使用高斯混合模型作为不确定数据的基本表示形式,仅需要保存不同组件的描述信息即可,可以更好地利用存储空间,完成对真实情况的逼近,在此基础上提出了一种可以发现时间维度上的不确定数据流聚类方法cumicro,该算法将时间直接作为数据属性,可直接查询某个时间维度的聚簇,避免了传统基于划分的聚类中较难发现非球状聚簇的问题.通过实验与经典算法umicro进行比较,证明了本文算法的有效性,并分析了不同K值、τ值下的聚类结果.最后得出结论,原始数据较密集时,相较原有基于离散模型的聚类,该算法具有准确度上的优势. 展开更多
关键词 高斯混合模型 不确定数据流 大数据 概要结构
下载PDF
顾及梯度的高斯混合模型在三维属性场空间聚类中的应用 被引量:4
17
作者 张宝一 陆浩 +4 位作者 杨莉 李雪峰 黄岸烁 王丽芳 吴湘滨 《地质找矿论丛》 CAS CSCD 2019年第3期460-470,共11页
针对高斯混合模型(GMM)在空间聚类中由于忽视目标对象之间的空间关联性而导致的高误判率等问题,本文提出了一种顾及梯度的高斯混合模型:GMM-G,并将其应用在三维属性场的空间聚类中。GMM-G用反映标量场最大属性变化方向的梯度因子来定义... 针对高斯混合模型(GMM)在空间聚类中由于忽视目标对象之间的空间关联性而导致的高误判率等问题,本文提出了一种顾及梯度的高斯混合模型:GMM-G,并将其应用在三维属性场的空间聚类中。GMM-G用反映标量场最大属性变化方向的梯度因子来定义邻域规则,设定梯度正交平面所通过的邻域体元更倾向于与中心体元归属于相同或相近的类别;并据此设计了符合归一性和空间连续性的空间邻域信息函数,来定义中心体元属于各类别的具有空间领域规则约束的后验概率。通过对由蒙特卡洛随机抽样构建的实验场的空间聚类结果进行对比表明,相对GMM方法,GMM-G具有更优的聚类精度及效率。最后,把GMM-G方法用于红透山铜矿区可控源音频大地电磁法(CSAMT)三维视电阻率场的空间聚类,得到了与已知岩性划分具有较高匹配度的分类结果,该方法可为物性属性场的岩性划分及地质推断提供相关的依据和参考。 展开更多
关键词 高斯混合模型 空间 梯度 空间邻域信息函数 属性场
下载PDF
基于高斯混合EM聚类的多编队航迹起始方法 被引量:6
18
作者 熊伟 顾祥岐 +1 位作者 徐从安 吕亚飞 《系统工程与电子技术》 EI CSCD 北大核心 2019年第11期2424-2430,共7页
针对现有航迹起始方法难以对编队目标进行有效航迹起始的问题,在Hough变换法及其衍生算法基础上,提出基于Hough变换和高斯混合最大期望(expactation maximazation,EM)聚类的多编队目标航迹起始方法。该方法首先利用量测数据的时序信息... 针对现有航迹起始方法难以对编队目标进行有效航迹起始的问题,在Hough变换法及其衍生算法基础上,提出基于Hough变换和高斯混合最大期望(expactation maximazation,EM)聚类的多编队目标航迹起始方法。该方法首先利用量测数据的时序信息和目标的运动参数进行筛选,剔除大量虚假量测;再对筛选后的量测数据进行Hough变换,得到初步航迹信息;然后利用相异度矩阵对所得航迹进行预聚类,完成聚类中心初始化;最后进行高斯混合EM聚类,得到聚类结果。仿真结果表明,与Hough变换法及其衍生算法相比,该方法能够快速有效地起始编队目标的航迹,解决了目标密集带来的航迹起始混乱问题。 展开更多
关键词 多编队目标 HOUGH变换 高斯混合最大期望聚类 航迹起始
下载PDF
基于快速求解高斯混合模型的流量聚类算法 被引量:9
19
作者 党小超 毛鹏鑫 郝占军 《计算机工程与应用》 CSCD 北大核心 2015年第8期96-101,共6页
基于聚类算法可以对多个属性聚类的特点,提出一种基于快速求解高斯混合模型的聚类算法,用于研究网络流量的分类,使其达到更佳的聚类效果。通过与其他算法比较,讨论了该种方法在流量聚类中的适用性。仿真结果表明,该方法聚类精度高,经过... 基于聚类算法可以对多个属性聚类的特点,提出一种基于快速求解高斯混合模型的聚类算法,用于研究网络流量的分类,使其达到更佳的聚类效果。通过与其他算法比较,讨论了该种方法在流量聚类中的适用性。仿真结果表明,该方法聚类精度高,经过初始聚类中心后的EM算法用于求解GMM有较高的估算准确性,有效地提高了EM算法的收敛速度。 展开更多
关键词 K-MEANS算法 参数初始化 高斯混合模型 流量
下载PDF
核磁共振横向弛豫时间谱高斯混合聚类及应用 被引量:4
20
作者 葛新民 薛宗安 +6 位作者 周军 胡法龙 李江涛 张恒荣 王烁龙 牛深园 赵吉儿 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2022年第2期296-305,共10页
为使核磁共振测井横向弛豫时间(T2)谱的定量表征结果更为直观地反映储集层类型和孔隙结构,提出基于高斯混合模型(GMM)的T2谱无监督聚类和孔隙结构定量识别方法。首先对T2谱数据进行主成分降维,减弱数据间的相关性;其次采用高斯混合模型... 为使核磁共振测井横向弛豫时间(T2)谱的定量表征结果更为直观地反映储集层类型和孔隙结构,提出基于高斯混合模型(GMM)的T2谱无监督聚类和孔隙结构定量识别方法。首先对T2谱数据进行主成分降维,减弱数据间的相关性;其次采用高斯混合模型概率密度函数对降维数据进行拟合,结合期望值最大化算法和赤池信息准则变化率得到模型参数和最佳聚类群集;最后分析不同聚类群集的T2谱特征、孔隙结构类型等,并与T2几何平均值、T2算术平均值等进行对比,通过数值模拟和核磁共振测井资料验证算法有效性。研究表明,基于GMM方法的聚类结果与T2谱形态、T2谱、孔隙结构、油气产能等具有很好的对应性,为孔隙结构定量识别、储集层级别划分和产能评价等提供新的手段。 展开更多
关键词 核磁共振T_(2)谱 高斯混合模型 期望最大化算法 赤池信息准则 无监督 孔隙结构定量标准
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部