期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
采用支持向量回归机的说话者确认系统
1
作者 龙艳花 郭武 戴礼荣 《小型微型计算机系统》 CSCD 北大核心 2009年第2期367-370,共4页
提出一种基于支持向量回归机的说话者确认方法.该方法利用高斯混合模型中的均值向量连接构成一个超向量来模拟目标说话者的身份特性.以该超向量作为分类样本,利用支持向量回归机的方法进行分类,从而在一定程度上减轻了信道因素对系统识... 提出一种基于支持向量回归机的说话者确认方法.该方法利用高斯混合模型中的均值向量连接构成一个超向量来模拟目标说话者的身份特性.以该超向量作为分类样本,利用支持向量回归机的方法进行分类,从而在一定程度上减轻了信道因素对系统识别精度的影响.该方法在NIST2006年说话者识别数据库上实验得到的识别等错误率比采用支持向量分类机方法有了相对12.8%的降低. 展开更多
关键词 支持向量回归 高斯混合超向量 说话者确认 支持向量分类机
下载PDF
基于多核SVM-GMM的短语音说话人识别 被引量:11
2
作者 林琳 陈虹 +1 位作者 陈建 金焕梅 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第2期504-509,共6页
运用多个核函数的线性组合构造多核空间,在多核空间上设计了基于支持向量机的说话人分类器,实现短语音说话人识别。多核映射能够解决单核映射核函数及其参数选择的难题,增加说话人的可区分性,提高分类器的性能。算法中结合了高斯混合模... 运用多个核函数的线性组合构造多核空间,在多核空间上设计了基于支持向量机的说话人分类器,实现短语音说话人识别。多核映射能够解决单核映射核函数及其参数选择的难题,增加说话人的可区分性,提高分类器的性能。算法中结合了高斯混合模型(GMM),并以GMM超向量作为说话人的最终特征参数进行仿真实验。实验表明,在短语音和两种噪声环境中,基于多核SVM-GMM的短语音说话人识别算法较SVM-GMM算法能得到更好的识别性能和鲁棒性。 展开更多
关键词 通信技术 说话人识别 短语音 多核支持向量 高斯混合模型向量
下载PDF
NAP序列核函数在话者识别中的应用 被引量:2
3
作者 邢玉娟 李明 《计算机工程》 CAS CSCD 北大核心 2010年第8期194-196,共3页
针对话者识别系统中特征向量不定长和交叉信道干扰等问题,提出一种基于超向量的扰动属性投影(NAP)核函数。该函数是一种新型的序列核函数,使支持向量机能在整体语音序列上分类,移除核函数空间中与话者识别无关的信道子空间信息。仿真实... 针对话者识别系统中特征向量不定长和交叉信道干扰等问题,提出一种基于超向量的扰动属性投影(NAP)核函数。该函数是一种新型的序列核函数,使支持向量机能在整体语音序列上分类,移除核函数空间中与话者识别无关的信道子空间信息。仿真实验结果表明,该函数可有效提高支持向量机的分类性能和话者识别系统的识别准确率。 展开更多
关键词 扰动属性投影 高斯混合模型向量 话者识别 支持向量
下载PDF
基于稀疏表示分类的说话人识别算法及其在智能考勤系统中的应用 被引量:1
4
作者 邢玉娟 谭萍 《工业仪表与自动化装置》 2016年第2期84-87,共4页
智能考勤系统在企业对员工的出勤考查中具有十分重要的作用。为了提高语音考勤系统的准确性,提出基于稀疏表示的说话人识别算法。该算法在通用背景模型的基础上提取说话人语音的高斯混合模型超向量,采用线性判别分析技术对超向量进行信... 智能考勤系统在企业对员工的出勤考查中具有十分重要的作用。为了提高语音考勤系统的准确性,提出基于稀疏表示的说话人识别算法。该算法在通用背景模型的基础上提取说话人语音的高斯混合模型超向量,采用线性判别分析技术对超向量进行信道补偿和降维,再由低维超向量形成稀疏表示的过完备字典。根据话者测试语音在过完备字典上的重构误差,对话者的身份进行验证。实验结果表明,基于稀疏表示分类的语音考勤系统具有良好的性能。 展开更多
关键词 语音考勤 说话人识别 稀疏表示 高斯混合模型向量 线性判别分析
下载PDF
基于区分性Model Pushing的语种识别方法 被引量:3
5
作者 刘伟伟 吉立新 +1 位作者 李邵梅 徐文 《电子技术应用》 北大核心 2012年第4期113-116,共4页
提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM。该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加... 提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM。该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加了目标与非目标的区分度。实验结果表明,区分性Model Pushing能有效地提高识别性能。 展开更多
关键词 语种识别 区分性Model PUSHING 高斯混合模型矢量-支持向量 平面法向量
下载PDF
基于稀疏表征的话者识别 被引量:2
6
作者 吕小听 李昕 +1 位作者 屈燕琴 胡晨 《计算机工程与应用》 CSCD 2014年第20期215-217,243,共4页
近年来,随着信号的稀疏性理论越来越受到人们的关注,稀疏表征分类器也作为一种新型的分类算法被应用到话者识别系统中。该模型的基本思想是:只要超完备字典足够大,任意待测样本都能够用超完备字典进行线性表示。基于信号的稀疏性理论,... 近年来,随着信号的稀疏性理论越来越受到人们的关注,稀疏表征分类器也作为一种新型的分类算法被应用到话者识别系统中。该模型的基本思想是:只要超完备字典足够大,任意待测样本都能够用超完备字典进行线性表示。基于信号的稀疏性理论,未知话者的向量系数,即稀疏解可以通过L1范数最小化获取。超完备字典则可视为语音特征向量在高斯混合模型-通用背景模型(GMM-UBM)上进行MAP自适应而得到的大型数据库。采用稀疏表征模型作为话者辨认的分类方法,基于TIMIT语料库的实验结果表明,所采用的话者辨认方法,能够大大提高说话人识别系统的性能。 展开更多
关键词 稀疏表征 高斯混合模型(GMM)均值向量 完备字典 最大后验(MAP)算法
下载PDF
基于UCR训练集重构的真实语音情感识别
7
作者 戴明洋 杨大利 徐明星 《北京信息科技大学学报(自然科学版)》 2012年第2期63-67,共5页
真实语音情感识别是使人机交互更加友好的重要手段,但是训练数据稀缺为这一领域带来很多挑战。为了减小这一阻碍,提出了语句串接与重采样(UCR)方法,以便高效利用存在的训练数据。UCR方法是将原始音频样本按照情感类型进行串接,形成一个... 真实语音情感识别是使人机交互更加友好的重要手段,但是训练数据稀缺为这一领域带来很多挑战。为了减小这一阻碍,提出了语句串接与重采样(UCR)方法,以便高效利用存在的训练数据。UCR方法是将原始音频样本按照情感类型进行串接,形成一个长的音频流,以一个固定粒度对其随机乱序,然后将其切割,并通过多次重采样操作来增加支持向量机(SVM)的训练样本数。实验基于一个从访谈节目中录制的真实语音情感库。实验结果表明,在统一背景模型-高斯混合模型-支持向量机(UBM—GMM—SVM)识别框架中这种训练集重构的方法错误率降低近33.10%。 展开更多
关键词 语音情感识别 高斯混合模型向量 UBM-GMM-SVM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部