期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于高斯过程优化与FLAC3D数值计算的岩体力学参数反分析方法 被引量:3
1
作者 龚杨凯 卢翠芳 +1 位作者 黄杰 苏国韶 《广西大学学报(自然科学版)》 CAS 北大核心 2019年第4期1038-1043,共6页
为了解决大型地下工程中岩体力学参数反分析的高计算代价问题,将适用于高计算代价优化问题的高斯过程优化方法与FLAC3D数值计算相结合,提出一种新的岩体力学参数反分析方法。研究结论表明,与传统的参数反分析方法相比较,高斯过程优化方... 为了解决大型地下工程中岩体力学参数反分析的高计算代价问题,将适用于高计算代价优化问题的高斯过程优化方法与FLAC3D数值计算相结合,提出一种新的岩体力学参数反分析方法。研究结论表明,与传统的参数反分析方法相比较,高斯过程优化方法的数值计算重分析次数显著降低,计算耗时明显减少,更适用于高计算代价的岩体参数反分析问题。 展开更多
关键词 岩体力学参数 地下工程 反分析 高斯过程优化
下载PDF
A genetic Gaussian process regression model based on memetic algorithm 被引量:2
2
作者 张乐 刘忠 +1 位作者 张建强 任雄伟 《Journal of Central South University》 SCIE EI CAS 2013年第11期3085-3093,共9页
Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance o... Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance of Gaussian process model.However,the common-used algorithm has the disadvantages of difficult determination of iteration steps,over-dependence of optimization effect on initial values,and easily falling into local optimum.To solve this problem,a method combining the Gaussian process with memetic algorithm was proposed.Based on this method,memetic algorithm was used to search the optimal hyper parameters of Gaussian process regression(GPR)model in the training process and form MA-GPR algorithms,and then the model was used to predict and test the results.When used in the marine long-range precision strike system(LPSS)battle effectiveness evaluation,the proposed MA-GPR model significantly improved the prediction accuracy,compared with the conjugate gradient method and the genetic algorithm optimization process. 展开更多
关键词 Gaussian process hyper-parameters optimization memetic algorithm regression model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部