期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
位移反分析的粒子群优化-高斯过程协同优化方法 被引量:20
1
作者 苏国韶 张克实 吕海波 《岩土力学》 EI CAS CSCD 北大核心 2011年第2期510-515,524,共7页
针对采用随机全局优化技术进行岩土工程位移反分析存在数值计算量大、效率低的问题,将粒子群优化算法与高斯过程机器学习技术相结合,提出了位移反分析的粒子群优化-高斯过程协同优化方法。该方法利用全局寻优性能优异的粒子群优化算法... 针对采用随机全局优化技术进行岩土工程位移反分析存在数值计算量大、效率低的问题,将粒子群优化算法与高斯过程机器学习技术相结合,提出了位移反分析的粒子群优化-高斯过程协同优化方法。该方法利用全局寻优性能优异的粒子群优化算法进行寻优的基础上,采用高斯过程机器学习模型不断地总结历史经验,预测包含全局最优解的最有前景区域,通过提高粒子群搜索效率并降低适应度评价次数,进而有效地降低位移反分析过程中的数值计算工作量。多种测试函数的数学验证和工程算例的研究结果表明该方法是可行的,与传统方法相比较,可显著地降低位移反分析的计算耗时。 展开更多
关键词 位移反分析 优化 粒子群优化 高斯过程机器学习
下载PDF
岩体力学参数反演的代理蜜獾优化方法 被引量:1
2
作者 李建合 孙伟哲 苏国韶 《科学技术与工程》 北大核心 2023年第1期376-384,共9页
针对复杂地下工程岩体力学参数反演时因大量调用数值计算模型导致计算耗时大的问题,提出一种新的仿生优化代理反演方法,即蜜獾优化算法-高斯过程回归-三维快速拉格朗日数值计算(honey badger algorithm-Gaussian process regression-FLA... 针对复杂地下工程岩体力学参数反演时因大量调用数值计算模型导致计算耗时大的问题,提出一种新的仿生优化代理反演方法,即蜜獾优化算法-高斯过程回归-三维快速拉格朗日数值计算(honey badger algorithm-Gaussian process regression-FLAC3D,HBA-GPR-FLAC3D)方法。该方法将围岩的实测位移与数值计算结果间的误差作为目标函数,将岩体力学参数作为优化变量,利用全局寻优性能优异的HBA搜索目标函数全局极小值,并采用牛顿优化算法进行当前最优算子邻域的局部寻优,局部寻优中采用GPR代理模型而非基于FLAC3D计算所构建的目标函数作为算子适应度评价工具。研究表明,与基于单纯仿生优化算法的反演方法相比,在达到相同计算精度条件下,所提出方法的数值模型调用次数显著降低,适用于单次数值计算较为耗时的复杂地下工程岩体力学参数快速识别。 展开更多
关键词 地下工程 反演 蜜獾优化 高斯过程机器学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部