期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种改进的高斯逆威沙特概率假设密度扩展目标跟踪算法 被引量:1
1
作者 李文娟 吕靖 +3 位作者 顾红 苏卫民 马超 杨建超 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1279-1286,共8页
假设扩展目标(ET)的扩展和量测数目分别为椭圆和泊松模型,高斯逆威沙特概率假设密度(GIW-PHD)能够估计扩展目标的运动和扩展状态。然而,该滤波器对空间邻近目标的数目、非椭圆目标和受到遮挡目标的扩展估计不够准确。针对这些问题,该文... 假设扩展目标(ET)的扩展和量测数目分别为椭圆和泊松模型,高斯逆威沙特概率假设密度(GIW-PHD)能够估计扩展目标的运动和扩展状态。然而,该滤波器对空间邻近目标的数目、非椭圆目标和受到遮挡目标的扩展估计不够准确。针对这些问题,该文提出一种改进的GIW-PHD。首先,假设目标扩展为一个相同尺寸的参考椭圆,通过设计新的散射矩阵得到改进的随机矩阵(RM)方法。然后,将改进的RM方法与假设量测数目服从多伯努利分布的ET-PHD结合,得到改进的GIW-PHD滤波器。仿真和实验结果表明,与传统GIW-PHD相比,改进的GIW-PHD估计的目标数目和量测数目较多,扩展较大的椭圆和非椭圆目标的扩展更准确。 展开更多
关键词 扩展目标跟踪 高斯威沙特概率假设密度 随机矩阵 多伯努利分布
下载PDF
一种基于多模型高斯逆Wishart PHD滤波器的空间邻近目标跟踪方法 被引量:6
2
作者 张慧 徐晖 +2 位作者 安玮 盛卫东 龙云利 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2014年第2期206-212,共7页
将空间邻近目标(Closely Spaced Objects,CSOs)整体建模为扩展目标(Extended Target,ET),用随机矢量和随机矩阵分别描述CSOs质心运动和扩散状态,并采用高斯逆Wishart(Gaussian inverse Wishart,GIW)概率假设密度(Probability Hypothesis... 将空间邻近目标(Closely Spaced Objects,CSOs)整体建模为扩展目标(Extended Target,ET),用随机矢量和随机矩阵分别描述CSOs质心运动和扩散状态,并采用高斯逆Wishart(Gaussian inverse Wishart,GIW)概率假设密度(Probability Hypothesis Density,PHD)滤波器实现杂波和漏检条件下CSOs的稳定跟踪.修正了原GIW-PHD滤波器量测模型和形状估计的缺陷,给出新的递推表达式,并在此基础上提出一种多(形变)模型GIW-PHD滤波器,以适应CSOs分裂和融合引起的形状变化.仿真结果表明,所提算法能够有效跟踪CSOs,状态估计比原GIW-PHD更加准确,对CSOs的变化更加敏感. 展开更多
关键词 红外传感器 像平面 空间邻近目标 扩展目标概率假设密度滤波器 多模型 高斯Wishart分布
下载PDF
基于GIW-PHD的扩展目标联合跟踪与分类算法 被引量:5
3
作者 樊鹏飞 李鸿艳 《电子学报》 EI CAS CSCD 北大核心 2018年第7期1562-1570,共9页
在使用估计器对扩展目标进行跟踪时,算法的精度会受到系统演化模型选择的影响.针对该问题,本文提出将扩展目标的形态信息直接作为目标的类别信息,每一类别确定了目标相关的运动模型,在多模型(Multiple Model,MM)高斯逆威沙特概率假设密... 在使用估计器对扩展目标进行跟踪时,算法的精度会受到系统演化模型选择的影响.针对该问题,本文提出将扩展目标的形态信息直接作为目标的类别信息,每一类别确定了目标相关的运动模型,在多模型(Multiple Model,MM)高斯逆威沙特概率假设密度(Gaussian Inverse Wishart PHD,GIW-PHD)滤波器的基础上,实现对扩展目标的联合跟踪与分类.仿真实验通过比较所提算法与GIW-PHD、MM-GIW-PHD两种滤波方法的性能,验证了本文所提算法的有效性. 展开更多
关键词 扩展目标 形态信息 类别信息 高斯威沙特概率假设密度(giw-phd) 联合跟踪与分类
下载PDF
结合幅度信息的扩展目标随机有限集跟踪方法 被引量:4
4
作者 柳超 孙进平 +1 位作者 陈小龙 张志国 《雷达学报(中英文)》 CSCD 北大核心 2020年第4期730-738,共9页
基于随机有限集的扩展目标跟踪方法通常根据量测的空间信息进行量测划分,在杂波密集环境下有可能将杂波量测划入目标单元,从而造成跟踪性能的下降。为此,该文将目标和杂波的幅度信息引入高斯逆威沙特概率假设密度(GIW-PHD)滤波器,通过... 基于随机有限集的扩展目标跟踪方法通常根据量测的空间信息进行量测划分,在杂波密集环境下有可能将杂波量测划入目标单元,从而造成跟踪性能的下降。为此,该文将目标和杂波的幅度信息引入高斯逆威沙特概率假设密度(GIW-PHD)滤波器,通过计算量测子集的幅度似然寻找最优的量测划分方法。此外,计算量测单元的中心时,采用幅度加权的方法计算量测单元的质量中心,以取代目前广泛使用的几何中心,从而进一步降低杂波对滤波器的干扰。在信杂比分别为13 dB和6 dB的条件下,通过对Rayleigh杂波中Swerling 1型起伏目标的跟踪结果证明了所提方法相比高斯逆威沙特概率假设密度滤波器具有更优的势估计和状态估计性能。 展开更多
关键词 扩展目标跟踪 随机有限集 幅度信息 高斯威沙特概率假设密度滤波器
下载PDF
一种基于椭圆随机超曲面模型的群目标高斯混合PHD滤波器 被引量:16
5
作者 张慧 徐晖 +1 位作者 王雪莹 王铁兵 《光学学报》 EI CAS CSCD 北大核心 2013年第9期6-15,共10页
在弹道导弹防御系统中,群目标跟踪是目前较为困难的问题之一。这些目标不仅具有相似的运动特性,且相互邻近,又由于红外光学探测器的特性和分辨率的影响,使得它们在像平面不再是点目标而是簇状像斑。因此,"一个目标至多产生一个量测... 在弹道导弹防御系统中,群目标跟踪是目前较为困难的问题之一。这些目标不仅具有相似的运动特性,且相互邻近,又由于红外光学探测器的特性和分辨率的影响,使得它们在像平面不再是点目标而是簇状像斑。因此,"一个目标至多产生一个量测"的传统多目标跟踪方法不再适用。为了实现对该类目标的有效跟踪,提出了一种新型滤波算法。该算法视群目标为一个整体,用椭圆随机超曲面模型描述其扩散程度,并将其与扩展目标高斯混合概率假设密度(PHD)滤波器相结合,通过跟踪群质心和扩散程度实现对像平面群目标的跟踪。通过仿真对比,所提算法在质心状态和扩散程度的估计精度方面均明显优于基于随机矩阵的高斯逆韦氏分布的概率假设密度滤波器。 展开更多
关键词 探测器 群目标跟踪 扩展目标 高斯混合 概率假设密度滤波器 随机超曲面模型 高斯韦氏分布 随机矩阵
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部