期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用格型递归最小二乘滤波器组的高光谱图像压缩
被引量:
3
1
作者
郑铁
薛长斌
宋金伟
《光学精密工程》
EI
CAS
CSCD
北大核心
2021年第4期896-905,共10页
自适应递归最小二乘滤波器具有预测准确、收敛速度快的特点,该滤波器被多种高光谱图像无损压缩方案作为重要组成部分。然而传统递归最小二乘滤波器无法快速找到每个谱带的最优预测长度,其压缩方案的性能有待提升。针对该问题,本文提出...
自适应递归最小二乘滤波器具有预测准确、收敛速度快的特点,该滤波器被多种高光谱图像无损压缩方案作为重要组成部分。然而传统递归最小二乘滤波器无法快速找到每个谱带的最优预测长度,其压缩方案的性能有待提升。针对该问题,本文提出基于格型递归最小二乘滤波器组的高光谱图像压缩方案。首先,该方案使用单边高斯预测器对待测像素点做谱带内预测,去除图像的空间相关性。其次,采用格型滤波器组筛选出每个谱带的最优滤波器,获得预测误差。并根据格型滤波器组链式序列更新的特点,简化最优滤波器的筛选过程,大幅度降低计算复杂度。最后对预测误差做算术编码。以AVIRIS 2006高光谱图像为测试数据集,本文算法对16位校准图像、16位未校准图像的平均压缩结果分别为3.34 bits/pixel和5.61 bits/pixel。该算法在获得良好压缩结果的情况下,计算时间低于同类别的其余算法。
展开更多
关键词
高光谱图像
无损压缩
递归最小二乘法
高斯预测器
格型滤波器组
下载PDF
职称材料
题名
利用格型递归最小二乘滤波器组的高光谱图像压缩
被引量:
3
1
作者
郑铁
薛长斌
宋金伟
机构
中国科学院国家空间科学中心
中国科学院大学
国家电网有限公司大数据中心
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2021年第4期896-905,共10页
基金
中国科学院基金资助项目(No.Y87015A080)。
文摘
自适应递归最小二乘滤波器具有预测准确、收敛速度快的特点,该滤波器被多种高光谱图像无损压缩方案作为重要组成部分。然而传统递归最小二乘滤波器无法快速找到每个谱带的最优预测长度,其压缩方案的性能有待提升。针对该问题,本文提出基于格型递归最小二乘滤波器组的高光谱图像压缩方案。首先,该方案使用单边高斯预测器对待测像素点做谱带内预测,去除图像的空间相关性。其次,采用格型滤波器组筛选出每个谱带的最优滤波器,获得预测误差。并根据格型滤波器组链式序列更新的特点,简化最优滤波器的筛选过程,大幅度降低计算复杂度。最后对预测误差做算术编码。以AVIRIS 2006高光谱图像为测试数据集,本文算法对16位校准图像、16位未校准图像的平均压缩结果分别为3.34 bits/pixel和5.61 bits/pixel。该算法在获得良好压缩结果的情况下,计算时间低于同类别的其余算法。
关键词
高光谱图像
无损压缩
递归最小二乘法
高斯预测器
格型滤波器组
Keywords
hyperspectral imagery
lossless compression
recursive least squares
Gaussian predictor
lattice filter group
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
利用格型递归最小二乘滤波器组的高光谱图像压缩
郑铁
薛长斌
宋金伟
《光学精密工程》
EI
CAS
CSCD
北大核心
2021
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部