期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于迭代正则化高斯-牛顿法的非线性Urysohn积分方程数值解 被引量:1
1
作者 陈亚文 仝云莉 闵涛 《纯粹数学与应用数学》 2019年第1期54-62,共9页
非线性Urysohn积分方程在许多领域中都有广泛的应用,但由于该方程具有不适定性的特点,数据的微小扰动可能导致解的巨大变化,给数值求解带来很大困难.为了获得稳定的、准确的数值解,本文利用迭代正则化高斯-牛顿法对此方程进行求解,给出... 非线性Urysohn积分方程在许多领域中都有广泛的应用,但由于该方程具有不适定性的特点,数据的微小扰动可能导致解的巨大变化,给数值求解带来很大困难.为了获得稳定的、准确的数值解,本文利用迭代正则化高斯-牛顿法对此方程进行求解,给出了利用Sigmoid-型函数确定迭代正则化参数的方法.对一类重力测定问题进行了数值模拟,将得到的数值解和相应的精确解作比较.结果表明,本文提出的方法在求解非线性Urysohn积分方程时是可行的也是有效的. 展开更多
关键词 非线性 Urysohn积分方程 正则化 数值解 正则化高斯-牛顿法
下载PDF
基于垂直距离最小二乘拟合的双曲线沉降模型 被引量:4
2
作者 向巍 郭际明 傅露 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2013年第5期571-574,共4页
引入临时坐标系,采用高斯-牛顿迭代算法,在双曲线基于垂直距离最小二乘拟合算法的基础上增加一个角度约束条件和两个平移约束条件,对沉降数据进行双曲线几何拟合而非代数拟合,提出了一种基于垂直距离最小二乘拟合的双曲线沉降模型的曲... 引入临时坐标系,采用高斯-牛顿迭代算法,在双曲线基于垂直距离最小二乘拟合算法的基础上增加一个角度约束条件和两个平移约束条件,对沉降数据进行双曲线几何拟合而非代数拟合,提出了一种基于垂直距离最小二乘拟合的双曲线沉降模型的曲线参数估计算法。算例表明,改进算法改善了传统算法的拟合精度。 展开更多
关键词 垂直距离拟合 双曲线沉降模型 非线性最小二乘 高斯-牛顿法迭代
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部