期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于高斯-粒子滤波的SLAM算法提取果实特征 被引量:2
1
作者 王丹丹 石峰 +1 位作者 杜雪 袁赣南 《河南师范大学学报(自然科学版)》 CAS 北大核心 2020年第2期59-65,共7页
针对传统农作物采摘方式落后、采摘效率低、果实特征识别精度低等问题,提出了一种基于SIFT的果实特征匹配算法.对导航机器人采集的果实图像进行去噪与特征提取,然后对不同传感器采集到的含有一定角度偏差的图像进行匹配,得到较精准的特... 针对传统农作物采摘方式落后、采摘效率低、果实特征识别精度低等问题,提出了一种基于SIFT的果实特征匹配算法.对导航机器人采集的果实图像进行去噪与特征提取,然后对不同传感器采集到的含有一定角度偏差的图像进行匹配,得到较精准的特征位置:提出了一种高斯-粒子滤波(Gauss-Particle Filter,Gauss-PF)的SLAM(Simultaneous Localization and Mapping)算法.仿真实验表明,通过增大噪声协方差及特征位置初值误差验证算法的精度,PF和Gauss-PF算法的误差均随时间逐渐降低,且在x,y方向,后者误差均小于1 cm.新的算法具有较强的稳定性与较高的定位精度.最后在同等条件下,基于单个果实特征位置(0,0)的特征进行x,y方向2次观测,并采用Gauss-PF和PF算法对观测值进行量测估计,实验表明新算法均能在(0,0)的较小邻域[-1,1]cm误差范围内对其进行估计,高于PF算法的精度[-2,2]cm. 展开更多
关键词 特征识别 特征提取 高斯-粒子滤波 量测估计
下载PDF
基于高斯—施密特粒子滤波器的多机器人协同定位 被引量:2
2
作者 邵金鑫 王玲 魏星 《计算机工程与科学》 CSCD 2007年第6期117-120,共4页
多机器人协同定位需对各个机器人的运动模型和观测模型精确建模,需要运用非线性、非高斯系统。已经应用于本领域的各种非线性算法主要有两种:一种是扩展卡尔曼滤波算法(EKF),它对非线性系统进行局部线性化,从而间接利用卡尔曼算法进行... 多机器人协同定位需对各个机器人的运动模型和观测模型精确建模,需要运用非线性、非高斯系统。已经应用于本领域的各种非线性算法主要有两种:一种是扩展卡尔曼滤波算法(EKF),它对非线性系统进行局部线性化,从而间接利用卡尔曼算法进行滤波与估算;另一种是序列蒙特卡罗算法,即粒子滤波器(PF)。本文介绍了一种改进的粒子滤波器,即高斯-施密特粒子滤波器(GHPF),重点比较这三种算法在多机器人协同定位领域的应用效果。 展开更多
关键词 协同定位 扩展卡尔曼滤波器(EKF) 粒子滤波器(PF) 高斯-施密特粒子滤波器(GHPF)
下载PDF
An Improved Gaussian Particle Filter Algorithm Using KLD-Sampling 被引量:1
3
作者 ZHOU Zhaihe ZHONG Yulu +1 位作者 ZENG Qingxi TIAN Xiangrui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期607-614,共8页
To adjust the samples of filtering adaptively,an improved Gaussian particle filter algorithm based on Kullback-Leibler divergence(KLD)-sampling(KLGPF)is proposed in this paper.During the process of sampling,the algori... To adjust the samples of filtering adaptively,an improved Gaussian particle filter algorithm based on Kullback-Leibler divergence(KLD)-sampling(KLGPF)is proposed in this paper.During the process of sampling,the algorithm calculates the KLD to adjust the size of the particle set between the discrete probability density function of particles and the true posterior probability density function.KLGPF has significant effect when the noise obeys Gaussian distribution and the statistical characteristics of noise change abruptly.Simulation results show that KLGPF could maintain a good estimation effect when the noise statistics changes abruptly.Compared with the particle filter algorithm using KLD-sampling(KLPF),the speed of KLGPF increases by 28%under the same conditions. 展开更多
关键词 particle filter Gaussian particle filter KLD-sampling noise mutation adaptive particle numbers
下载PDF
采用拟蒙特卡罗法的被动多传感器目标跟踪 被引量:8
4
作者 郭辉 姬红兵 武斌 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第6期1042-1047,共6页
使用拟蒙特卡罗采样方法替代传统的蒙特卡罗采样方法,改善了高斯粒子滤波器的性能,结合多传感器集中式融合策略,提出了一种基于拟蒙特卡罗-高斯粒子滤波器的被动多传感器目标跟踪算法,较好地解决了被动跟踪中的强非线性和弱可观测性问题... 使用拟蒙特卡罗采样方法替代传统的蒙特卡罗采样方法,改善了高斯粒子滤波器的性能,结合多传感器集中式融合策略,提出了一种基于拟蒙特卡罗-高斯粒子滤波器的被动多传感器目标跟踪算法,较好地解决了被动跟踪中的强非线性和弱可观测性问题.该算法在降低计算复杂度的同时提高了跟踪的精度和稳定性,使算法快速收敛,并且具有并行结构,有利于用超大规模集成电路来实现. 展开更多
关键词 多传感器 拟蒙特卡罗-高斯粒子滤波 目标跟踪
下载PDF
自适应GHPF及其在组合导航中的应用 被引量:4
5
作者 薛丽 高社生 胡高歌 《计算机仿真》 CSCD 北大核心 2013年第5期108-111,共4页
研究组合导航系统精度优化问题,针对粒子滤波存在重要性密度函数难以选取的问题,提出一种新的自适应GHPF算法,通过高斯-厄米特滤波来获取状态均值和协方差阵,计算自适应因子并利用自适应因子调节均值和方差,得到一种参数可调节的重要性... 研究组合导航系统精度优化问题,针对粒子滤波存在重要性密度函数难以选取的问题,提出一种新的自适应GHPF算法,通过高斯-厄米特滤波来获取状态均值和协方差阵,计算自适应因子并利用自适应因子调节均值和方差,得到一种参数可调节的重要性密度函数。重要性密度函数考虑了最新量测的影响,提高了滤波精度,使滤波性能明显改善,能更好地解决非线性非高斯系统模型的滤波问题。将提出的算法应用于SINS/SAR组合导航系统中,仿真结果表明,提出的滤波算法能提高导航计算的精度,定位性能明显优于与扩展Kalman滤波、粒子滤波以及高斯-厄米特粒子滤波。 展开更多
关键词 粒子滤波 高斯-厄米特滤波 自适应高斯-厄米特粒子滤波 组合导航
下载PDF
Gaussian particle filter based pose and motion estimation 被引量:1
6
作者 WU Xue-dong SONG Zhi-huan 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第10期1604-1613,共10页
Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fi... Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry. A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the panicle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF. 展开更多
关键词 Gaussian particle filter (GPF) Pose and motion estimation Line features Monocular vision Extended Kalman filter(EKF) Unscented Kalman filter (UKF) Dual quatemion
下载PDF
Federated unscented particle filtering algorithm for SINS/CNS/GPS system 被引量:7
7
作者 胡海东 黄显林 +1 位作者 李明明 宋卓越 《Journal of Central South University》 SCIE EI CAS 2010年第4期778-785,共8页
To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-... To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models. 展开更多
关键词 navigation system integrated navigation unscented Kalman filter unscented particle filter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部