本实验针对马铃薯干腐病潜育期到发病期的诊断方法进行研究,利用时序高光谱对病害发生过程中的病症特征进行分析和提取,并基于时序性特征采用动态时间弯曲(dynamic time warping,DTW)聚类算法对时序关键点进行分析,即对发病期初始点进...本实验针对马铃薯干腐病潜育期到发病期的诊断方法进行研究,利用时序高光谱对病害发生过程中的病症特征进行分析和提取,并基于时序性特征采用动态时间弯曲(dynamic time warping,DTW)聚类算法对时序关键点进行分析,即对发病期初始点进行诊断。本研究在数据预处理中使用图像阈值分割算法提取动态感兴趣区域,利用概率密度比算法剔除病害光谱异常值,在对比病症的光谱与外观后,发现马铃薯干腐病的光谱具有非单调性特征,再基于该非单调性特征使用高斯核函数的主成分权重系数法进行光谱特征提取。最后基于病害特征,利用模糊聚类方法判定时序关键点,其结果正确率仅为66.7%;针对特征时序性再利用DTW聚类算法判定时序关键点,其结果正确率达94.4%。本实验研究表明基于DTW的时序高光谱诊断方法能对马铃薯干腐病发病期进行有效诊断。展开更多
The gut microbiota is a complex ecosystem composed of many bacteria and their metabolites.It plays an irreplaceable role in human digestion,nutrient absorption,energy supply,fat metabolism,immune regulation,and many o...The gut microbiota is a complex ecosystem composed of many bacteria and their metabolites.It plays an irreplaceable role in human digestion,nutrient absorption,energy supply,fat metabolism,immune regulation,and many other aspects.Exploring the structure and function of the gut microbiota,as well as their key genes and metabolites,will enable the early diagnosis and auxiliary diagnosis of diseases,new treatment methods,better effects of drug treatments,and better guidance in the use of antibiotics.The identification of gut microbiota plays an important role in clinical diagnosis and treatment,as well as in drug research and development.Therefore,it is necessary to conduct a comprehensive review of this rapidly evolving topic.Traditional identification methods cannot comprehensively capture the diversity of gut microbiota.Currently,with the rapid development of molecular biology,the classification and identification methods for gut microbiota have evolved from the initial phenotypic and chemical identification to identification at the molecular level.This review integrates the main methods of gut microbiota identification and evaluates their application.We pay special attention to the research progress on molecular biological methods and focus on the application of high-throughput sequencing technology in the identification of gut microbiota.This revolutionary method for intestinal flora identification heralds a new chapter in our understanding of the microbial world.展开更多
Knowledge of both vegetation distribution pattern and phenology changes is very important.Their complicated relationship with elevation and accessibility were explored through a geographically weighted regression(GWR)...Knowledge of both vegetation distribution pattern and phenology changes is very important.Their complicated relationship with elevation and accessibility were explored through a geographically weighted regression(GWR) framework in Fujian province,China.The 16-day time series of 250 m Moderate Resolution Imaging Spectroradiometer(MODIS) Enhanced Vegetation Index(EVI) dataset from 2000 to 2010 was applied.Wavelet transform method was adopted to decompose the original time series and construct the annual maximum EVI and amplitude of the annual phenological cycle(EVI).Candidate explaining factors included topographic conditions,accessibility variables and proportions of primary vegetation types.Results revealed very strong positive influence from parameters of elevation and accessibility to big rivers and negative effect from accessibility to resident on both maximum EVI and phenological magnitude through ordinary linear least square(OLS) regression analysis.GWR analysis revealed that spatially,the parameters of topography and accessibility had a very complex relationship with both maximum EVI and phenology magnitude,as a result of the various combinations of environmental factors,vegetation composition and also intensive anthropogenic impact.Apart from the continuously increasing trend of phenology magnitude with increasing altitude,the influence of topography and accessibility on maximum EVI and phenological magnitude generally decreased,even from strongly positive to negative,with increasing altitude or distance.Specially,the most rapid change of correlation coefficient between them was observed within a low elevation or close distance;less variation was discovered within a certain range of medium altitude or distance and their relationship might change above this range.Non-stationary approaches are needed to better characterize the complex vegetation dynamic pattern in Mountain-hill Region.展开更多
To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s...To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.展开更多
The metal futures price fluctuation prediction model was constructed based on symbolic high-frequency time series using high-frequency data on the Shanghai Copper Futures Exchange from July 2014 to September 2018,and ...The metal futures price fluctuation prediction model was constructed based on symbolic high-frequency time series using high-frequency data on the Shanghai Copper Futures Exchange from July 2014 to September 2018,and the sample was divided into 194 histogram time series employing symbolic time series.The next cycle was then predicted using the K-NN algorithm and exponential smoothing,respectively.The results show that the trend of the histogram of the copper futures earnings prediction is gentler than that of the actual histogram,the overall situation of the prediction results is better,and the overall fluctuation of the one-week earnings of the copper futures predicted and the actual volatility are largely the same.This shows that the results predicted by the K-NN algorithm are more accurate than those predicted by the exponential smoothing method.Based on the predicted one-week price fluctuations of copper futures,regulators and investors in China’s copper futures market can timely adjust their regulatory policies and investment strategies to control risks.展开更多
The Wayland algorithm has been improved in order to evaluate the degree of visible determinism for dynamical systems that generate time series. The objective of this study is to show that the Double-Wayland algorithm ...The Wayland algorithm has been improved in order to evaluate the degree of visible determinism for dynamical systems that generate time series. The objective of this study is to show that the Double-Wayland algorithm can distinguish between time series generated by a deterministic process and those generated by a stochastic process. The authors conducted numerical analysis of the van der Pol equation and a stochastic differential equation as a deterministic process and a Ganssian stochastic process, respectively. In case of large S/N ratios, the noise term did not affect the translation error derived from time series data, but affected that from the temporal differences of time series. In case of larger noise amplitudes, the translation error from the differences was calculated to be approximately 1 using the Double-Wayland algorithm, and it did not vary in magnitude. Furthermore, the translation error derived from the differenced sequences was considered stable against noise. This novel algorithm was applied to the detection of anomalous signals in some fields of engineering, such as the analysis of railway systems and bio-signals.展开更多
Employing the well-known D-InSAR technique,we investigated landslide monitoring in the Three Gorges region using TerraSAR-X data.The experiment demonstrates that using both the amplitude and differential phase allows ...Employing the well-known D-InSAR technique,we investigated landslide monitoring in the Three Gorges region using TerraSAR-X data.The experiment demonstrates that using both the amplitude and differential phase allows us to identify the precise location,deformation and time range of occurrence of certain landslides.To overcome the atmospheric effect on D-InSAR results,a time-series analysis was also carried out.The observed nonlinear relationship between the deformation and water level suggests that reservoir water level fluctuation is one of the major causes of landslides,which is significant in terms of issuing landslide warnings.In addition,the comparison of TerraSAR-X and C-band ASAR data results indicates that TerraSAR-X data provide far more reasonable deformation measurements because of their high temporal and spatial resolutions.展开更多
Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that...Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov-Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed 'Gaussian conjugacy' in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity.展开更多
It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolutio...It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolution and finer resolution data. The first category uses time series of data to retrieve the variation of land surface for classification, which are usually used for coarser resolution data with high temporal frequency. The second category uses fine spatial resolution data to classify different land surface. With the launch of Chinese satellite constellation HJ-1in 2008, four 30 m spatial resolution CCDs with about 360 km coverage for each one onboard two satellites made a revisit period of two days, which brought a new type of data with both high spatial resolution and high temporal frequency. Therefore, by taking the spatiotemporal advantage of HJ-1/CCD data we propose a new method for finer resolution land cover mapping using the time series HJ-1/CCD data, which can greatly improve the land cover mapping accuracy. In our two study areas, the very high resolution remote sensing data within Google Earth are used to validate the land cover mapping results, which shows a very high mapping accuracy of 95.76% and 83.78% and a high Kappa coefficient of 0.9423 and 0.8165 in the Dahuofang area of Liaoning Province and the Heiquan area of Gansu Province respectively.展开更多
文摘本实验针对马铃薯干腐病潜育期到发病期的诊断方法进行研究,利用时序高光谱对病害发生过程中的病症特征进行分析和提取,并基于时序性特征采用动态时间弯曲(dynamic time warping,DTW)聚类算法对时序关键点进行分析,即对发病期初始点进行诊断。本研究在数据预处理中使用图像阈值分割算法提取动态感兴趣区域,利用概率密度比算法剔除病害光谱异常值,在对比病症的光谱与外观后,发现马铃薯干腐病的光谱具有非单调性特征,再基于该非单调性特征使用高斯核函数的主成分权重系数法进行光谱特征提取。最后基于病害特征,利用模糊聚类方法判定时序关键点,其结果正确率仅为66.7%;针对特征时序性再利用DTW聚类算法判定时序关键点,其结果正确率达94.4%。本实验研究表明基于DTW的时序高光谱诊断方法能对马铃薯干腐病发病期进行有效诊断。
文摘The gut microbiota is a complex ecosystem composed of many bacteria and their metabolites.It plays an irreplaceable role in human digestion,nutrient absorption,energy supply,fat metabolism,immune regulation,and many other aspects.Exploring the structure and function of the gut microbiota,as well as their key genes and metabolites,will enable the early diagnosis and auxiliary diagnosis of diseases,new treatment methods,better effects of drug treatments,and better guidance in the use of antibiotics.The identification of gut microbiota plays an important role in clinical diagnosis and treatment,as well as in drug research and development.Therefore,it is necessary to conduct a comprehensive review of this rapidly evolving topic.Traditional identification methods cannot comprehensively capture the diversity of gut microbiota.Currently,with the rapid development of molecular biology,the classification and identification methods for gut microbiota have evolved from the initial phenotypic and chemical identification to identification at the molecular level.This review integrates the main methods of gut microbiota identification and evaluates their application.We pay special attention to the research progress on molecular biological methods and focus on the application of high-throughput sequencing technology in the identification of gut microbiota.This revolutionary method for intestinal flora identification heralds a new chapter in our understanding of the microbial world.
基金support forthis work from Chinese National Natural Science Foundation (Grant no. 41071267)Scientific Research Foundation for Returned Scholars,Ministry of Education of China ([2012]940)Science Foundation of Fujian province (Grant no.2012J01167,2012I0005)
文摘Knowledge of both vegetation distribution pattern and phenology changes is very important.Their complicated relationship with elevation and accessibility were explored through a geographically weighted regression(GWR) framework in Fujian province,China.The 16-day time series of 250 m Moderate Resolution Imaging Spectroradiometer(MODIS) Enhanced Vegetation Index(EVI) dataset from 2000 to 2010 was applied.Wavelet transform method was adopted to decompose the original time series and construct the annual maximum EVI and amplitude of the annual phenological cycle(EVI).Candidate explaining factors included topographic conditions,accessibility variables and proportions of primary vegetation types.Results revealed very strong positive influence from parameters of elevation and accessibility to big rivers and negative effect from accessibility to resident on both maximum EVI and phenological magnitude through ordinary linear least square(OLS) regression analysis.GWR analysis revealed that spatially,the parameters of topography and accessibility had a very complex relationship with both maximum EVI and phenology magnitude,as a result of the various combinations of environmental factors,vegetation composition and also intensive anthropogenic impact.Apart from the continuously increasing trend of phenology magnitude with increasing altitude,the influence of topography and accessibility on maximum EVI and phenological magnitude generally decreased,even from strongly positive to negative,with increasing altitude or distance.Specially,the most rapid change of correlation coefficient between them was observed within a low elevation or close distance;less variation was discovered within a certain range of medium altitude or distance and their relationship might change above this range.Non-stationary approaches are needed to better characterize the complex vegetation dynamic pattern in Mountain-hill Region.
基金Project(2006BAC07B03) supported by the National Key Technology R & D Program of ChinaProject(2006G040-A) supported by the Foundation of the Science and Technology Section of Ministry of RailwayProject(2008yb044) supported by the Foundation of Excellent Doctoral Dissertation of Central South University
文摘To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.
基金Projects(71633006,7184207,7184210)supported by the National Natural Science Foundation of ChinaProject(2019CX016)supported by the Annual Innovation-driven Project in Central South University,China。
文摘The metal futures price fluctuation prediction model was constructed based on symbolic high-frequency time series using high-frequency data on the Shanghai Copper Futures Exchange from July 2014 to September 2018,and the sample was divided into 194 histogram time series employing symbolic time series.The next cycle was then predicted using the K-NN algorithm and exponential smoothing,respectively.The results show that the trend of the histogram of the copper futures earnings prediction is gentler than that of the actual histogram,the overall situation of the prediction results is better,and the overall fluctuation of the one-week earnings of the copper futures predicted and the actual volatility are largely the same.This shows that the results predicted by the K-NN algorithm are more accurate than those predicted by the exponential smoothing method.Based on the predicted one-week price fluctuations of copper futures,regulators and investors in China’s copper futures market can timely adjust their regulatory policies and investment strategies to control risks.
文摘The Wayland algorithm has been improved in order to evaluate the degree of visible determinism for dynamical systems that generate time series. The objective of this study is to show that the Double-Wayland algorithm can distinguish between time series generated by a deterministic process and those generated by a stochastic process. The authors conducted numerical analysis of the van der Pol equation and a stochastic differential equation as a deterministic process and a Ganssian stochastic process, respectively. In case of large S/N ratios, the noise term did not affect the translation error derived from time series data, but affected that from the temporal differences of time series. In case of larger noise amplitudes, the translation error from the differences was calculated to be approximately 1 using the Double-Wayland algorithm, and it did not vary in magnitude. Furthermore, the translation error derived from the differenced sequences was considered stable against noise. This novel algorithm was applied to the detection of anomalous signals in some fields of engineering, such as the analysis of railway systems and bio-signals.
基金supported by National Basic Research Program of China (Grant No.2007CB714405)National Natural Science Foundation of China (Grant No.41021061)Major Research Program of the Three Gorges Region Geologic Disaster Protection (Grant No.SXKY3-6-4)
文摘Employing the well-known D-InSAR technique,we investigated landslide monitoring in the Three Gorges region using TerraSAR-X data.The experiment demonstrates that using both the amplitude and differential phase allows us to identify the precise location,deformation and time range of occurrence of certain landslides.To overcome the atmospheric effect on D-InSAR results,a time-series analysis was also carried out.The observed nonlinear relationship between the deformation and water level suggests that reservoir water level fluctuation is one of the major causes of landslides,which is significant in terms of issuing landslide warnings.In addition,the comparison of TerraSAR-X and C-band ASAR data results indicates that TerraSAR-X data provide far more reasonable deformation measurements because of their high temporal and spatial resolutions.
基金Project supported by the Marie Sk?odowska-Curie Individual Fellowship(H2020-MSCA-IF-2015)(No.709267)the Open Project Program of Ministry of Education Key Laboratory of Measurement and Control of Complex Systems of Engineering,Southeast University,China(No.MCCSE2017A01)
文摘Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov-Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed 'Gaussian conjugacy' in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity.
基金supported by the Chinese Academy of Sciences Action Plan for West Development Project (Grant No. KZCX2-XB3-15)the National High-tech R&D Program of China (Grant No. 2012AA12A304)
文摘It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolution and finer resolution data. The first category uses time series of data to retrieve the variation of land surface for classification, which are usually used for coarser resolution data with high temporal frequency. The second category uses fine spatial resolution data to classify different land surface. With the launch of Chinese satellite constellation HJ-1in 2008, four 30 m spatial resolution CCDs with about 360 km coverage for each one onboard two satellites made a revisit period of two days, which brought a new type of data with both high spatial resolution and high temporal frequency. Therefore, by taking the spatiotemporal advantage of HJ-1/CCD data we propose a new method for finer resolution land cover mapping using the time series HJ-1/CCD data, which can greatly improve the land cover mapping accuracy. In our two study areas, the very high resolution remote sensing data within Google Earth are used to validate the land cover mapping results, which shows a very high mapping accuracy of 95.76% and 83.78% and a high Kappa coefficient of 0.9423 and 0.8165 in the Dahuofang area of Liaoning Province and the Heiquan area of Gansu Province respectively.