Abstract Asphaltene, from co-processing of coal and petroleum residues is one of the most precious and complex molecular mixtures existing, with tremendous economic relevance. Asphaltene was separated by Soxhlet extra...Abstract Asphaltene, from co-processing of coal and petroleum residues is one of the most precious and complex molecular mixtures existing, with tremendous economic relevance. Asphaltene was separated by Soxhlet extraction with methylbenzene and then divided into three parts by distillation. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS) to separate and characterize organic nitrogen species in the distillates of asphaltene at molecular level. Molecular mass of compounds was mainly distributed from 150 to 600 ~t. Number of rings plus double bonds (rdb) and synchronous fluorescence spectra indicated that most of the organonitrogen compounds (NPAC) contained heterocyclic aromatic rings, including pyridines, anilines, quinolins, pyrroles, carbazoles and indoles plus various alkyl groups. Constant-wavelength synchronous fluo- rescence spectrometry (CWSFS) indicated NPAC with 2-3 rings were the main structures of organonitrogen compounds and the corresponding structural information was proposed. Some organic nitrogen isomers were separated and identified by atmospheric pressure chemical ionization (APCI) GC-Q-TOF MS and electrospray ionization (ESI) HPLC-Q-TOF MS. The methodology applied here contained chromatographic injection of the diluted sample using conventional columns sets and Data Analysis 4.2 software. Identifying molecular structures provides a foundation to understand all aspects of coal- derived asphaltene, enabling a first-principles approach to optimize resource utilization.展开更多
We studied the uptake of ammonium, nitrate, and a variety of amino acids by alpine plant species in the Kobresia humil alpine meadow ecosystem in situ. We examined the extent of niche separation in uptake of N source ...We studied the uptake of ammonium, nitrate, and a variety of amino acids by alpine plant species in the Kobresia humil alpine meadow ecosystem in situ. We examined the extent of niche separation in uptake of N source by different plant species in alpine communities, and investigated the contribution of symbiotically fixed N to the total N in alpine meadow. The results are (1) δ15N natural abundance values of 13 plant species lie between -2.680‰ and 5.169‰, and the scope is 7.849‰. (2) Le- guminous plants, such as Trigonella ruthenica, Gueldenstaedtia diversiffolia, and Oxytyopis ochrocephala, and non-legumi- nous plant Gentiana straminea uptake low amounts of 15N labeled ammonium, nitrate, glycine or aspartate in soil. (3) As far as the plant uptake of organic N is concerned, Kobresia humilis, Poa pratensis, and Gentiuna spathutifolta can effectively uptake organic nitrogen, and about 37%-40% of the nitrogen of these species comes from soil organic nitrogen sources (such as glycine and aspartate). Stipa aliena can effectively uptake nitrate, and 60% of its nitrogen comes from soil nitrate. Potentilla anserina, Poa pratensis, and Thalictrum alpinum can effectively absorb ammonium in comparason to other plant species in the meadow, and about 25%-27% of the nitrogen in these plants comes from soil ammonium. (4) The contribution of leguminous fixed N to total N is 7.48%-9.26% in Kobresia humilis alpine meadow. (5) These data show many plant species of alpine meadow may effectively utilize dissolved organic nitrogen such as amino acids, and these plants have diverse ways to uptake soil nitrogen in alpine meadows. Based on the results we can partly explain why there are abundant biodiversities and how plants at alpine habitat utilize the limited soil N sources.展开更多
基金Acknowledgements The authors gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (No. U1510122). The authors declare that the experiments comply with the current laws of China.
文摘Abstract Asphaltene, from co-processing of coal and petroleum residues is one of the most precious and complex molecular mixtures existing, with tremendous economic relevance. Asphaltene was separated by Soxhlet extraction with methylbenzene and then divided into three parts by distillation. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS) to separate and characterize organic nitrogen species in the distillates of asphaltene at molecular level. Molecular mass of compounds was mainly distributed from 150 to 600 ~t. Number of rings plus double bonds (rdb) and synchronous fluorescence spectra indicated that most of the organonitrogen compounds (NPAC) contained heterocyclic aromatic rings, including pyridines, anilines, quinolins, pyrroles, carbazoles and indoles plus various alkyl groups. Constant-wavelength synchronous fluo- rescence spectrometry (CWSFS) indicated NPAC with 2-3 rings were the main structures of organonitrogen compounds and the corresponding structural information was proposed. Some organic nitrogen isomers were separated and identified by atmospheric pressure chemical ionization (APCI) GC-Q-TOF MS and electrospray ionization (ESI) HPLC-Q-TOF MS. The methodology applied here contained chromatographic injection of the diluted sample using conventional columns sets and Data Analysis 4.2 software. Identifying molecular structures provides a foundation to understand all aspects of coal- derived asphaltene, enabling a first-principles approach to optimize resource utilization.
基金supported by National Natural Science Foundation of China(Grant Nos.30660120 and 41030105)National Basic Research Program of China (Grant No. 2009CB421102)International Cooperation Program of Science and Technology Department of Qinghai Province (Grant No. 2010-H-809)
文摘We studied the uptake of ammonium, nitrate, and a variety of amino acids by alpine plant species in the Kobresia humil alpine meadow ecosystem in situ. We examined the extent of niche separation in uptake of N source by different plant species in alpine communities, and investigated the contribution of symbiotically fixed N to the total N in alpine meadow. The results are (1) δ15N natural abundance values of 13 plant species lie between -2.680‰ and 5.169‰, and the scope is 7.849‰. (2) Le- guminous plants, such as Trigonella ruthenica, Gueldenstaedtia diversiffolia, and Oxytyopis ochrocephala, and non-legumi- nous plant Gentiana straminea uptake low amounts of 15N labeled ammonium, nitrate, glycine or aspartate in soil. (3) As far as the plant uptake of organic N is concerned, Kobresia humilis, Poa pratensis, and Gentiuna spathutifolta can effectively uptake organic nitrogen, and about 37%-40% of the nitrogen of these species comes from soil organic nitrogen sources (such as glycine and aspartate). Stipa aliena can effectively uptake nitrate, and 60% of its nitrogen comes from soil nitrate. Potentilla anserina, Poa pratensis, and Thalictrum alpinum can effectively absorb ammonium in comparason to other plant species in the meadow, and about 25%-27% of the nitrogen in these plants comes from soil ammonium. (4) The contribution of leguminous fixed N to total N is 7.48%-9.26% in Kobresia humilis alpine meadow. (5) These data show many plant species of alpine meadow may effectively utilize dissolved organic nitrogen such as amino acids, and these plants have diverse ways to uptake soil nitrogen in alpine meadows. Based on the results we can partly explain why there are abundant biodiversities and how plants at alpine habitat utilize the limited soil N sources.