The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
Results of in-situ vibration measurement carried out at Tianjin West Elevated Railway Station which has the trains running on the station structure were reported. The main excitation source is the train passing throug...Results of in-situ vibration measurement carried out at Tianjin West Elevated Railway Station which has the trains running on the station structure were reported. The main excitation source is the train passing through the station. Vibration measurements were recorded in the vertical direction of the supporting track beam, the platform and the steel truss beam of the waiting hall, as well as in the vertical, longitudinal and transverse directions of the roof arch base of the station. Acceleration time responses were obtained. The maximum value, vibration level and one-third octave band RMS spectra of the measured accelerations were studied. The propagation of vibration in different structural floors was discussed. The influence of train speed, distance to the vibration source and the type of train on the structural vibration were analyzed. Results show that the vibration level increases with the train speed, while it attenuates with the distance to the track. Furthermore, the vibration responses of different structural floors were compared, and it is noted that the vertical vibration of the bottom slab of the platform is most severe and the transverse vibration of the roof arch base is the smallest. The results provide reference on the vibration characteristics and vibration energy distribution of this type of "Train on building frame" system used as an elevated railway station.展开更多
Delay-Tolerant Networks (DTNs) are wireless networks that often experience temporary, even long-duration partitioning. Current DTN researches mainly focus on pure delay-tolerant networks that are extreme environments ...Delay-Tolerant Networks (DTNs) are wireless networks that often experience temporary, even long-duration partitioning. Current DTN researches mainly focus on pure delay-tolerant networks that are extreme environments within a limited application scope. It motivates the identification of a more reasonable and valuable DTN architecture, which can be applied in a wider range of environments to achieve interoperability between some networks suffering from frequent network partitioning, and other networks provided with stable and high speed Internet access. Such hybrid delay-tolerant networks have a lot of applications in real world. A novel and practical Cache-Assign-Forward (CAF) architecture is proposed as an appropriate approach to tie together such hybrid networks to achieve an efficient and flexible data communication. Based on CAF, we enhance the existing DTN routing protocols and apply them to complex hybrid delay-tolerant networks. Simulations show that CAF can improve DTN routing performance significantly in hybrid DTN environments.展开更多
The paper looks at some bridge structures from ancient aqueducts to the most recent viaducts since people have always built structures that help them to cross terrain obstacles such as rivers, ravines and hills. Their...The paper looks at some bridge structures from ancient aqueducts to the most recent viaducts since people have always built structures that help them to cross terrain obstacles such as rivers, ravines and hills. Their primary goal has functionality and efficiency rather than aesthetic considerations and, yet from a time perspective, they still impress with their beauty and perfection. Gradually, architects began to take care of the form of bridges, as in the case of the Rialto Bridge in Venice. Nowadays, the most renowned architects, with Norman Foster in the lead, take up the design of bridge "architecture". Although technical solutions remain top priority, aesthetic qualities are widely recognized and appreciated.展开更多
With the rapid development of integrated circuit(IC)technology,reusable intelligent property(IP)core design is widely valued by the industry.Based on the in-depth study of the functional characteristics of advanced mi...With the rapid development of integrated circuit(IC)technology,reusable intelligent property(IP)core design is widely valued by the industry.Based on the in-depth study of the functional characteristics of advanced microcontroller bus architecture(AMBA),a design scheme of IP core is presented,and it is divided into the functional modules,and the structural design of the IP core is completed.The relationship between the internal modules of the IP core is clarified,and the top-down design method is used to build the internal architecture of the IP core.The IP core interface module,register module,baud rate module,transmit module,receive module,and interrupt module are designed in detail by using Verilog language.The simulation results show that the designed IP core supports serial peripheral interface(SPI)protocol,the function coverage of IP core reaches 100%,the maximum working frequency reaches 200 MHz,and the resource occupancy rate is less than 15%.The reusable IP core can support multiple data formats,multiple timing transmission modes,and master/slave operation modes,reducing the resource consumption of hardware circuits and having stronger applicability.展开更多
In design and construction of low/high rise buildings, different forms of construction can be applied such as concrete shear wall structural system and framed structural system without or with masonry infill walls. At...In design and construction of low/high rise buildings, different forms of construction can be applied such as concrete shear wall structural system and framed structural system without or with masonry infill walls. At present, most buildings in East Africa are constructed as reinforced concrete framed structures with strong masonry infill, but during design, engineers assume that the masonry infill panels have zero contribution in offering load resistance. Due to the problem above, a study with an objective of finding out the influence of masonry panels on the properties of reinforced concrete infilled frame under vertical load has been done. Three types of models: reinforced concrete frame model, masonry model and reinforced concrete frame with masonry infill, were investigated using finite element technique. In additional to the finite element analysis, laboratory models were prepared and tested so as to check the validity of the analytical results. The obtained results have led to an establishment of a mathematical model which may be useful to the design engineers since masonry wall panels can now be considered as load bearing elements. Such consideration of frame together with masonry leads to an accurate and optimal design of the frame, resulting into lesser amount of reinforcement and geometrical properties of the frame.展开更多
High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The e...High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The equivalent load method was employed to account for random repeated loads in structural reliability analysis. Degradation of material strength was regarded as a Gamma process. The probabilistic perturbation method was, then, employed for response moment computation. Example of a high-speed train bogie structure under time-variant load was employed for reliability and sensitivity analyses. Monte-Carlo simulation verifies the accuracy and efficiency of the proposed method in time-variant reliability analysis. The analysis results show that the reliability calculation considering the strength degradation and repeated load is closer to the practicality than the method of considering reliability calculation only. Its decreasing velocity is faster than the traditional reliability. The reliability sensitivity value changes over time. The analysis results provide a variation trend of reliability and sensitivity to design and usage of bogie frame.展开更多
Integrated with an improved architectural vulnerability factor (AVF) computing model, a new architectural level soft error reliability analysis framework, SS-SERA (soft error reliability analysis based on SimpleSca...Integrated with an improved architectural vulnerability factor (AVF) computing model, a new architectural level soft error reliability analysis framework, SS-SERA (soft error reliability analysis based on SimpleScalar), was developed. SS-SERA was used to estimate the AVFs for various on-chip structures accurately. Experimental results show that the AVFs of issue queue (IQ), register update units (RUU), load store queue (LSQ) and functional unit (FU) are 38.11%, 22.17%, 23.05% and 24.43%, respectively. For address-based structures, i.e., levell data cache (LID), DTLB, level2 unified cache (L2U), levell instruction cache (LII) and ITLB, AVFs of their data arrays are 22.86%, 27.57%, 14.80%, 8.25% and 12.58%, lower than their tag arrays' AVFs which are 30.01%, 28.89%, 17.69%, 10.26% and 13.84%, respectively. Furthermore, using the AVF values obtained with SS-SERA, a qualitative and quantitative analysis of the AVF variation and predictability was performed for the structures studied. Experimental results show that the AVF exhibits significant variations across different structures and workloads, and is influenced by multiple microarchitectural metrics and their interactions. Besides, AVFs of SPEC2K floating point programs exhibit better predictability than SPEC2K integer programs.展开更多
Location of the heavily loaded building on the ground of the small load capacity requires application of the appropriate foundation structure. The required foundation system is most often deep, it is expensive and its...Location of the heavily loaded building on the ground of the small load capacity requires application of the appropriate foundation structure. The required foundation system is most often deep, it is expensive and its cost increases significantly when the building is located in earthquake area or in mining damage sector. The proposed structural system of the combined foundation makes possible to design and to construct a very stable and relative inexpensive foundation structure, which can obtain an extremely large horizontal surface and which can be placed not deeply beneath the terrain level. It can be a very solid support structure for a tall building placed on very weak subsoil and at the same time located in seismic area. This system can be applied not only for new buildings but it can be used for the existing buildings and moreover for straighten of the inclined objects. Due to special arrangement of component parts the combined foundation possesses inherent features of a vibration damper, what is highly desirable if buildings have to be located in earthquake areas. When the aboveground storeys structure has some similar patterns with structural form of the combined foundation then the structural system of the whole building obtains coherent structural characteristics and it is called the combined structural system of the tall building. Suitable application of this system makes possible to design high-rise buildings having interesting and unique architectonic forms, what is presented on a selected example.展开更多
Four intensive uplift periods, i.e., 60–35, 25–17 and 12–8 Ma (but 18–13 Ma in the Himalayas of the southern Tibet), and since about 5 Ma, can be determined on the Tibetan Plateau by synthetical analysis of low-te...Four intensive uplift periods, i.e., 60–35, 25–17 and 12–8 Ma (but 18–13 Ma in the Himalayas of the southern Tibet), and since about 5 Ma, can be determined on the Tibetan Plateau by synthetical analysis of low-temperature thermo-chronology data, sedimentary deposit records, and structural deformation records of different areas. The strong tectonic uplift periods in different areas on the Tibetan Plateau are penecontemporaneous, except for the Himalayan area of the southern Tibet, where a rapid uplift and exhumation period, controlled by the activity of the South Tibetan Detachment System faults, occurred during 18–13 Ma. These strong uplift and exhumation periods correspond well to intensive deformation activity periods, suggesting tectonically-controlled uplift and exhumation. The deposit records, such as the distribution of coarse clastic sediments, the distribution of tectonically-controlled basins, stratigraphic discontinuousness or unconformity, and fault-controlled geomorphologic evolution, also match well with the strong uplift and exhumation periods. Expanding processes of the plateau are also discussed.展开更多
One dimensional(1 D) nanostructures have many possible applications in electronic, optical, and sensing devices associated with their nanosized lateral dimensions. In this regard, a general and bottom-up strategy to s...One dimensional(1 D) nanostructures have many possible applications in electronic, optical, and sensing devices associated with their nanosized lateral dimensions. In this regard, a general and bottom-up strategy to synthesize 1 D nanoparticle arrays and conductive nanowires with a facile structural/compositional control is highly desired. We herein report a protein-sheathed single walled carbon nanotube(SWNT) that satisfies the criteria for an ideal template to assemble micron-long gold nanoparticle(Au NP) linear arrays with high structural rigidity. The resulting Au NP array has minimized inter-particle gaps, which is especially useful to template the overgrowth of Ag, Pd, and Pd/Ag metals into continuous nanowires(Au@M, M=Ag, Pd, Ag/Pd). Our method successfully overcomes the incompatibility between carbon and metal materials, and the resulting superstructured metal nanowires have a tunable diameter below 100 nm and a shape closely replicating a SWNT. The Ag nanowires are composed of coalesced Au@Ag coreshell nanoparticles, while the Pd and Pd/Ag nanowires are made of very fine Pd nanocrystallites around the Au NP cores. These unique structural features are pivotal to various applications including surface enhanced Raman scattering(SERS), electrocatalysis, and gas sensors.展开更多
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
基金Project(50938008)supported by the Natural Science Foundation of Beijing,ChinaProject(2012JBM007)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(NCET-11-0571)supported by the Program for New Century Excellent Talents in University,China
文摘Results of in-situ vibration measurement carried out at Tianjin West Elevated Railway Station which has the trains running on the station structure were reported. The main excitation source is the train passing through the station. Vibration measurements were recorded in the vertical direction of the supporting track beam, the platform and the steel truss beam of the waiting hall, as well as in the vertical, longitudinal and transverse directions of the roof arch base of the station. Acceleration time responses were obtained. The maximum value, vibration level and one-third octave band RMS spectra of the measured accelerations were studied. The propagation of vibration in different structural floors was discussed. The influence of train speed, distance to the vibration source and the type of train on the structural vibration were analyzed. Results show that the vibration level increases with the train speed, while it attenuates with the distance to the track. Furthermore, the vibration responses of different structural floors were compared, and it is noted that the vertical vibration of the bottom slab of the platform is most severe and the transverse vibration of the roof arch base is the smallest. The results provide reference on the vibration characteristics and vibration energy distribution of this type of "Train on building frame" system used as an elevated railway station.
基金The authors would like to thank Prof. Xu Zhiwei and the re- viewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported by the National Key Basic Research Program of China under Grant No. 2011CB302702 the Na- tional Natural Science Foundation of China under Grants No. 61132001, No. 61120106008, No. 61070187, No. 60970133, No. 61003225 the Beijing Nova Program.
文摘Delay-Tolerant Networks (DTNs) are wireless networks that often experience temporary, even long-duration partitioning. Current DTN researches mainly focus on pure delay-tolerant networks that are extreme environments within a limited application scope. It motivates the identification of a more reasonable and valuable DTN architecture, which can be applied in a wider range of environments to achieve interoperability between some networks suffering from frequent network partitioning, and other networks provided with stable and high speed Internet access. Such hybrid delay-tolerant networks have a lot of applications in real world. A novel and practical Cache-Assign-Forward (CAF) architecture is proposed as an appropriate approach to tie together such hybrid networks to achieve an efficient and flexible data communication. Based on CAF, we enhance the existing DTN routing protocols and apply them to complex hybrid delay-tolerant networks. Simulations show that CAF can improve DTN routing performance significantly in hybrid DTN environments.
文摘The paper looks at some bridge structures from ancient aqueducts to the most recent viaducts since people have always built structures that help them to cross terrain obstacles such as rivers, ravines and hills. Their primary goal has functionality and efficiency rather than aesthetic considerations and, yet from a time perspective, they still impress with their beauty and perfection. Gradually, architects began to take care of the form of bridges, as in the case of the Rialto Bridge in Venice. Nowadays, the most renowned architects, with Norman Foster in the lead, take up the design of bridge "architecture". Although technical solutions remain top priority, aesthetic qualities are widely recognized and appreciated.
文摘With the rapid development of integrated circuit(IC)technology,reusable intelligent property(IP)core design is widely valued by the industry.Based on the in-depth study of the functional characteristics of advanced microcontroller bus architecture(AMBA),a design scheme of IP core is presented,and it is divided into the functional modules,and the structural design of the IP core is completed.The relationship between the internal modules of the IP core is clarified,and the top-down design method is used to build the internal architecture of the IP core.The IP core interface module,register module,baud rate module,transmit module,receive module,and interrupt module are designed in detail by using Verilog language.The simulation results show that the designed IP core supports serial peripheral interface(SPI)protocol,the function coverage of IP core reaches 100%,the maximum working frequency reaches 200 MHz,and the resource occupancy rate is less than 15%.The reusable IP core can support multiple data formats,multiple timing transmission modes,and master/slave operation modes,reducing the resource consumption of hardware circuits and having stronger applicability.
文摘In design and construction of low/high rise buildings, different forms of construction can be applied such as concrete shear wall structural system and framed structural system without or with masonry infill walls. At present, most buildings in East Africa are constructed as reinforced concrete framed structures with strong masonry infill, but during design, engineers assume that the masonry infill panels have zero contribution in offering load resistance. Due to the problem above, a study with an objective of finding out the influence of masonry panels on the properties of reinforced concrete infilled frame under vertical load has been done. Three types of models: reinforced concrete frame model, masonry model and reinforced concrete frame with masonry infill, were investigated using finite element technique. In additional to the finite element analysis, laboratory models were prepared and tested so as to check the validity of the analytical results. The obtained results have led to an establishment of a mathematical model which may be useful to the design engineers since masonry wall panels can now be considered as load bearing elements. Such consideration of frame together with masonry leads to an accurate and optimal design of the frame, resulting into lesser amount of reinforcement and geometrical properties of the frame.
基金Projects(51135003,U1234208)supported by the National Natural Science Foundation of ChinaProject(IRT0816)supported by Program for Changjiang Scholars and Innovative Research Team in University of ChinaProject(N110603001)supported by the Fundamental Research Funds for the Central Universities of China
文摘High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The equivalent load method was employed to account for random repeated loads in structural reliability analysis. Degradation of material strength was regarded as a Gamma process. The probabilistic perturbation method was, then, employed for response moment computation. Example of a high-speed train bogie structure under time-variant load was employed for reliability and sensitivity analyses. Monte-Carlo simulation verifies the accuracy and efficiency of the proposed method in time-variant reliability analysis. The analysis results show that the reliability calculation considering the strength degradation and repeated load is closer to the practicality than the method of considering reliability calculation only. Its decreasing velocity is faster than the traditional reliability. The reliability sensitivity value changes over time. The analysis results provide a variation trend of reliability and sensitivity to design and usage of bogie frame.
基金Projects(60970036,60873016,61170045)supported by the National Natural Science Foundation of ChinaProjects(2009AA01Z102,2009AA01Z124)supported by the National High Technology Development Program of China
文摘Integrated with an improved architectural vulnerability factor (AVF) computing model, a new architectural level soft error reliability analysis framework, SS-SERA (soft error reliability analysis based on SimpleScalar), was developed. SS-SERA was used to estimate the AVFs for various on-chip structures accurately. Experimental results show that the AVFs of issue queue (IQ), register update units (RUU), load store queue (LSQ) and functional unit (FU) are 38.11%, 22.17%, 23.05% and 24.43%, respectively. For address-based structures, i.e., levell data cache (LID), DTLB, level2 unified cache (L2U), levell instruction cache (LII) and ITLB, AVFs of their data arrays are 22.86%, 27.57%, 14.80%, 8.25% and 12.58%, lower than their tag arrays' AVFs which are 30.01%, 28.89%, 17.69%, 10.26% and 13.84%, respectively. Furthermore, using the AVF values obtained with SS-SERA, a qualitative and quantitative analysis of the AVF variation and predictability was performed for the structures studied. Experimental results show that the AVF exhibits significant variations across different structures and workloads, and is influenced by multiple microarchitectural metrics and their interactions. Besides, AVFs of SPEC2K floating point programs exhibit better predictability than SPEC2K integer programs.
文摘Location of the heavily loaded building on the ground of the small load capacity requires application of the appropriate foundation structure. The required foundation system is most often deep, it is expensive and its cost increases significantly when the building is located in earthquake area or in mining damage sector. The proposed structural system of the combined foundation makes possible to design and to construct a very stable and relative inexpensive foundation structure, which can obtain an extremely large horizontal surface and which can be placed not deeply beneath the terrain level. It can be a very solid support structure for a tall building placed on very weak subsoil and at the same time located in seismic area. This system can be applied not only for new buildings but it can be used for the existing buildings and moreover for straighten of the inclined objects. Due to special arrangement of component parts the combined foundation possesses inherent features of a vibration damper, what is highly desirable if buildings have to be located in earthquake areas. When the aboveground storeys structure has some similar patterns with structural form of the combined foundation then the structural system of the whole building obtains coherent structural characteristics and it is called the combined structural system of the tall building. Suitable application of this system makes possible to design high-rise buildings having interesting and unique architectonic forms, what is presented on a selected example.
基金supported by China Geological Survey (Grant No. 1212010610103)National Natural Science Foundation of China (Grant Nos. 40902060, 40672137)
文摘Four intensive uplift periods, i.e., 60–35, 25–17 and 12–8 Ma (but 18–13 Ma in the Himalayas of the southern Tibet), and since about 5 Ma, can be determined on the Tibetan Plateau by synthetical analysis of low-temperature thermo-chronology data, sedimentary deposit records, and structural deformation records of different areas. The strong tectonic uplift periods in different areas on the Tibetan Plateau are penecontemporaneous, except for the Himalayan area of the southern Tibet, where a rapid uplift and exhumation period, controlled by the activity of the South Tibetan Detachment System faults, occurred during 18–13 Ma. These strong uplift and exhumation periods correspond well to intensive deformation activity periods, suggesting tectonically-controlled uplift and exhumation. The deposit records, such as the distribution of coarse clastic sediments, the distribution of tectonically-controlled basins, stratigraphic discontinuousness or unconformity, and fault-controlled geomorphologic evolution, also match well with the strong uplift and exhumation periods. Expanding processes of the plateau are also discussed.
基金supported by the National Science Fund for Distinguished Young Scholars (21425521)the National Natural Science Foundation of China (21521001)+1 种基金the National Key Research and Development Program of China (2016YFA0201300)the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘One dimensional(1 D) nanostructures have many possible applications in electronic, optical, and sensing devices associated with their nanosized lateral dimensions. In this regard, a general and bottom-up strategy to synthesize 1 D nanoparticle arrays and conductive nanowires with a facile structural/compositional control is highly desired. We herein report a protein-sheathed single walled carbon nanotube(SWNT) that satisfies the criteria for an ideal template to assemble micron-long gold nanoparticle(Au NP) linear arrays with high structural rigidity. The resulting Au NP array has minimized inter-particle gaps, which is especially useful to template the overgrowth of Ag, Pd, and Pd/Ag metals into continuous nanowires(Au@M, M=Ag, Pd, Ag/Pd). Our method successfully overcomes the incompatibility between carbon and metal materials, and the resulting superstructured metal nanowires have a tunable diameter below 100 nm and a shape closely replicating a SWNT. The Ag nanowires are composed of coalesced Au@Ag coreshell nanoparticles, while the Pd and Pd/Ag nanowires are made of very fine Pd nanocrystallites around the Au NP cores. These unique structural features are pivotal to various applications including surface enhanced Raman scattering(SERS), electrocatalysis, and gas sensors.