对于结构动力分析中的离散系统运动方程,现有算法的计算精度和效率均依赖于时间步长的选取,这是时间域问题求解的难点.基于EEP(element energy projection)超收敛计算的自适应有限元法,以EEP超收敛解代替未知真解,估计常规有限元解的误...对于结构动力分析中的离散系统运动方程,现有算法的计算精度和效率均依赖于时间步长的选取,这是时间域问题求解的难点.基于EEP(element energy projection)超收敛计算的自适应有限元法,以EEP超收敛解代替未知真解,估计常规有限元解的误差,并自动细分网格,目前已对诸类以空间坐标为自变量的边值问题取得成功.对离散系统运动方程建立弱型Galerkin有限元解,引入基于EEP法的自适应求解策略,在时间域上自动划分网格,最终得到所求时域内任一时刻均满足给定误差限的动位移解,进而建立了一种时间域上的新型自适应求解算法.展开更多
文摘对于结构动力分析中的离散系统运动方程,现有算法的计算精度和效率均依赖于时间步长的选取,这是时间域问题求解的难点.基于EEP(element energy projection)超收敛计算的自适应有限元法,以EEP超收敛解代替未知真解,估计常规有限元解的误差,并自动细分网格,目前已对诸类以空间坐标为自变量的边值问题取得成功.对离散系统运动方程建立弱型Galerkin有限元解,引入基于EEP法的自适应求解策略,在时间域上自动划分网格,最终得到所求时域内任一时刻均满足给定误差限的动位移解,进而建立了一种时间域上的新型自适应求解算法.