通用变量含误差(errors-in-variables, EIV)模型将EIV模型扩展至最一般化的形式,其加权整体最小二乘算法(weighted total least squares, WTLS)同时顾及观测向量、观测向量的系数矩阵和参数向量的系数矩阵中的随机误差。将通用EIV函数...通用变量含误差(errors-in-variables, EIV)模型将EIV模型扩展至最一般化的形式,其加权整体最小二乘算法(weighted total least squares, WTLS)同时顾及观测向量、观测向量的系数矩阵和参数向量的系数矩阵中的随机误差。将通用EIV函数模型展开,将二阶项纳入模型的常数项,从而将非线性的通用EIV模型表示为线性的高斯-赫尔默特模型,推导出通用EIV模型的线性化整体最小二乘(linearized total least squares,LTLS)算法和近似精度估计公式。通过模拟数据和实例评估分析可知,LTLS算法与通用EIV模型的WTLS算法估计结果一致,验证了算法的正确性和可行性。当模型含大量估计量时,通用EIV模型的LTLS算法显著提升了计算效率,收敛速度更快。展开更多
文摘通用变量含误差(errors-in-variables, EIV)模型将EIV模型扩展至最一般化的形式,其加权整体最小二乘算法(weighted total least squares, WTLS)同时顾及观测向量、观测向量的系数矩阵和参数向量的系数矩阵中的随机误差。将通用EIV函数模型展开,将二阶项纳入模型的常数项,从而将非线性的通用EIV模型表示为线性的高斯-赫尔默特模型,推导出通用EIV模型的线性化整体最小二乘(linearized total least squares,LTLS)算法和近似精度估计公式。通过模拟数据和实例评估分析可知,LTLS算法与通用EIV模型的WTLS算法估计结果一致,验证了算法的正确性和可行性。当模型含大量估计量时,通用EIV模型的LTLS算法显著提升了计算效率,收敛速度更快。