Although the modified Goldstein filter based on the local signal-to-noise (SNR) has been proved to be superior to the classical Goldstein and Baran filters with more comprehensive filter parameter, its adaptation is...Although the modified Goldstein filter based on the local signal-to-noise (SNR) has been proved to be superior to the classical Goldstein and Baran filters with more comprehensive filter parameter, its adaptation is not always sufficient in the reduction of phase noise. In this work, the local SNR-based Goldstein filter is further developed with the improvements in the definition of the local SNR and the adaption of the filtering patch size. What's more, for preventing the loss of the phase signal caused by the excessive filtering, an iteration filtering operation is also introduced in this new algorithm. To evaluate the performance of the proposed algorithm, both a simulated digital elevation model (DEM) interferogram and real SAR deformation interferogram spanning the L' Aquila earthquake are carried out. The quantitative results from the simulated and real data reveal that up to 79.5% noises can be reduced by the new filter, indicating 9%-32% improvements over the previous local SNR-based Goldstein filter. This demonstrates that the new filter is not only equipped with sufficient adaption, but also can suppress the phase noise without the sacrifice of the phase signal.展开更多
基金Foundation item: Projects(40974006, 40774003) supported by the National Natural Science Foundation of China Project(NCET-08-0570) supported by the Program for New Century Excellent Talents in Universities of China+2 种基金 Proj ect(2011JQ001) supported by the Fundamental Research Funds for the Central Universities of China Project(PolyU 5155/07E) supported by the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China Project(CX2011B 102) supported by the Doctoral Research Innovation of Hunan Province, China
文摘Although the modified Goldstein filter based on the local signal-to-noise (SNR) has been proved to be superior to the classical Goldstein and Baran filters with more comprehensive filter parameter, its adaptation is not always sufficient in the reduction of phase noise. In this work, the local SNR-based Goldstein filter is further developed with the improvements in the definition of the local SNR and the adaption of the filtering patch size. What's more, for preventing the loss of the phase signal caused by the excessive filtering, an iteration filtering operation is also introduced in this new algorithm. To evaluate the performance of the proposed algorithm, both a simulated digital elevation model (DEM) interferogram and real SAR deformation interferogram spanning the L' Aquila earthquake are carried out. The quantitative results from the simulated and real data reveal that up to 79.5% noises can be reduced by the new filter, indicating 9%-32% improvements over the previous local SNR-based Goldstein filter. This demonstrates that the new filter is not only equipped with sufficient adaption, but also can suppress the phase noise without the sacrifice of the phase signal.