Multi-decadal high resolution climate change simulations over East Asia were performed by using The Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3), nested within the NA...Multi-decadal high resolution climate change simulations over East Asia were performed by using The Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3), nested within the NASA/NCAR global model FvGCM/CCM3. Two sets of simulations were conducted at 20-km grid spacings, one for present day (1961-1990) and one for the future climate (2071-2100, IPCC A2 scenario). Simulations of present climate conditions over China by RegCM3 and FvGCM were compared against observations to assess the model performance. Results showed that both models repro- duced the observed spatial structure of 500 hPa height, surface air temperature and precipitation. Compared with FvGCM, RegCM3 provided increasing spatial detail of surface variables. Furthermore, RegCM3 improved the simulation of monsoon precipitation over the region. Changes in the mean temperature and precipitation were analyzed and compared between the two models. Significant warming in the end of the 21st century was simulated by both models in December-January-February (DJF), June-July-August (JJA), and the annual mean. In DJF, greater warming was simulated by FvGCM over Northeast and Northwest China, as well as the Tibetan Plateau, compared with RegCM. In JJA, RegCM3 simulated greater warming over northern China, Inner Mongolia, Northwest China, and the Tibetan Plateau. Simulated changes in DJF precipitation showed similar spatial patterns between the two models. In JJA, while FvGCM projected a prevailing increase of monsoon precipitation over China, which is in agreement with other global models, RegCM3 projected extended areas of decreased precipitation. Changes in the variability for annual mean temperature and precipitation also are presented.展开更多
Ceramic fiber reinforced silica aerogel composites are novel insulation materials in the thermal protection field for hypersonic vehicles. Before the aerogel composites are applied in load-bearing structures, it is ne...Ceramic fiber reinforced silica aerogel composites are novel insulation materials in the thermal protection field for hypersonic vehicles. Before the aerogel composites are applied in load-bearing structures, it is necessary to investigate their mechanical properties including load-bearing and deformation recovery capabilities. High temperature from service conditions will have important effects on the mechanical properties of thermal protection materials. In this paper, compression tests including loading and unloading stages were conducted for ceramic fiber reinforced silica aerogel composites at room temperature and elevated temperatures(300℃, 600℃ and 900℃). Influences of thermal exposure to high temperature and high temperature service environment on the compression property and deformation recovery were both investigated. Scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD) were applied to help understand the mechanisms of mechanical property variations. The experimental results show that the compression modulus and strength both increase with the increasing thermal exposure temperature and testing temperature,but the deformation recovery capability decreases. The micro structure changes caused by thermal sintering are considered as the main reason for the property variations.Viscous flow and matter transport due to high temperature resulted in the fusion of aerogel particles. This made the particle skeleton thicker and stronger, which led to higher stiffness and strength of the composites. However, matrix cracks induced by the formation and fracture of larger pores made unrecoverable deformation more serious. In the tests at elevated temperatures,the aggregation of aerogel particles in a fused state got more severe because of the addition of mechanical load. As a result, the degradation of deformation recovery capability became more significant.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2009CB421407)the R & D Special Fund for Public Welfare (Grant Nos. Industry Meteorology-GYHY200806010 and Forestry-200804001)
文摘Multi-decadal high resolution climate change simulations over East Asia were performed by using The Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3), nested within the NASA/NCAR global model FvGCM/CCM3. Two sets of simulations were conducted at 20-km grid spacings, one for present day (1961-1990) and one for the future climate (2071-2100, IPCC A2 scenario). Simulations of present climate conditions over China by RegCM3 and FvGCM were compared against observations to assess the model performance. Results showed that both models repro- duced the observed spatial structure of 500 hPa height, surface air temperature and precipitation. Compared with FvGCM, RegCM3 provided increasing spatial detail of surface variables. Furthermore, RegCM3 improved the simulation of monsoon precipitation over the region. Changes in the mean temperature and precipitation were analyzed and compared between the two models. Significant warming in the end of the 21st century was simulated by both models in December-January-February (DJF), June-July-August (JJA), and the annual mean. In DJF, greater warming was simulated by FvGCM over Northeast and Northwest China, as well as the Tibetan Plateau, compared with RegCM. In JJA, RegCM3 simulated greater warming over northern China, Inner Mongolia, Northwest China, and the Tibetan Plateau. Simulated changes in DJF precipitation showed similar spatial patterns between the two models. In JJA, while FvGCM projected a prevailing increase of monsoon precipitation over China, which is in agreement with other global models, RegCM3 projected extended areas of decreased precipitation. Changes in the variability for annual mean temperature and precipitation also are presented.
基金supported by the National Natural Science Foundation of China(Grant No.51275023)
文摘Ceramic fiber reinforced silica aerogel composites are novel insulation materials in the thermal protection field for hypersonic vehicles. Before the aerogel composites are applied in load-bearing structures, it is necessary to investigate their mechanical properties including load-bearing and deformation recovery capabilities. High temperature from service conditions will have important effects on the mechanical properties of thermal protection materials. In this paper, compression tests including loading and unloading stages were conducted for ceramic fiber reinforced silica aerogel composites at room temperature and elevated temperatures(300℃, 600℃ and 900℃). Influences of thermal exposure to high temperature and high temperature service environment on the compression property and deformation recovery were both investigated. Scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FT-IR) and X-ray diffraction(XRD) were applied to help understand the mechanisms of mechanical property variations. The experimental results show that the compression modulus and strength both increase with the increasing thermal exposure temperature and testing temperature,but the deformation recovery capability decreases. The micro structure changes caused by thermal sintering are considered as the main reason for the property variations.Viscous flow and matter transport due to high temperature resulted in the fusion of aerogel particles. This made the particle skeleton thicker and stronger, which led to higher stiffness and strength of the composites. However, matrix cracks induced by the formation and fracture of larger pores made unrecoverable deformation more serious. In the tests at elevated temperatures,the aggregation of aerogel particles in a fused state got more severe because of the addition of mechanical load. As a result, the degradation of deformation recovery capability became more significant.