To explore the feasibility of the full automatic animal experimental cabin to establish the animal models in normobaric/hypobaric hypoxic and high carbon dioxide environment. Methods: Sixty SPF-class male DS rats wer...To explore the feasibility of the full automatic animal experimental cabin to establish the animal models in normobaric/hypobaric hypoxic and high carbon dioxide environment. Methods: Sixty SPF-class male DS rats were divided into 2 groups, 20 for normobaric, hypoxic conditions and the other 40 for hypobaric, hypoxic conditions. For each group, the pulmonary arterial pressure and carotid arterial pressure indicators of rats were examined by using the physiological multi-detector, and the pulmonary vascular changes in the structure were observed. Results: The normobaric/hypobaric hypoxic with high carbon dioxide environment can promote the formation of pulmonary hypertension and accelerate changes in pulmonary vascular remodeling, and promote the right ventricular hypertrophy. Conclusion: Clinical applications showed that the animal experimental cabin has observed and controlled accurately. The result was safe, reliable and reproducible. The cabin can successfully establish the pulmonary hypertension model in normobaric/hypobaric hypoxic with high carbon dioxide environment, and in order to study the physiological mechanism of a variety of circulation and respiratory diseases caused by lack of oxygen, which provided an experimental technology platform for clinical research.展开更多
文摘To explore the feasibility of the full automatic animal experimental cabin to establish the animal models in normobaric/hypobaric hypoxic and high carbon dioxide environment. Methods: Sixty SPF-class male DS rats were divided into 2 groups, 20 for normobaric, hypoxic conditions and the other 40 for hypobaric, hypoxic conditions. For each group, the pulmonary arterial pressure and carotid arterial pressure indicators of rats were examined by using the physiological multi-detector, and the pulmonary vascular changes in the structure were observed. Results: The normobaric/hypobaric hypoxic with high carbon dioxide environment can promote the formation of pulmonary hypertension and accelerate changes in pulmonary vascular remodeling, and promote the right ventricular hypertrophy. Conclusion: Clinical applications showed that the animal experimental cabin has observed and controlled accurately. The result was safe, reliable and reproducible. The cabin can successfully establish the pulmonary hypertension model in normobaric/hypobaric hypoxic with high carbon dioxide environment, and in order to study the physiological mechanism of a variety of circulation and respiratory diseases caused by lack of oxygen, which provided an experimental technology platform for clinical research.