期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
模拟人工湿地中的植物多样性与系统抵抗力 被引量:4
1
作者 李丹 刘阳 +5 位作者 蒋跃平 任远 杜园园 谷保静 常杰 葛滢 《生态学杂志》 CAS CSCD 北大核心 2015年第7期1854-1859,共6页
设计模拟人工湿地实验,探究铵干扰下生态系统抵抗力与物种多样性的关系。在90个沙培微宇宙中配置了4个物种丰富度梯度(1、2、3、4),设置了加铵干扰和无干扰2组处理。结果表明:(1)无干扰时植物地上生物量随物种丰富度的增加显著增加,而... 设计模拟人工湿地实验,探究铵干扰下生态系统抵抗力与物种多样性的关系。在90个沙培微宇宙中配置了4个物种丰富度梯度(1、2、3、4),设置了加铵干扰和无干扰2组处理。结果表明:(1)无干扰时植物地上生物量随物种丰富度的增加显著增加,而铵干扰会消解丰富度的正效应;(2)地上生物量对铵干扰的抵抗力与丰富度呈负相关;(3)抵抗力与未干扰的地上生物量负相关;(4)菖蒲(Acorus calamus)在系统中的存在会显著降低系统对铵的抵抗力,其他种无影响。本研究设置了新的干扰类型,拓展了多样性-抵抗力研究。 展开更多
关键词 稳定性 物种丰富度 生物量 微宇宙 高氮生境 铵干扰
原文传递
Patterns of Soil ^(15)N and Total N and Their Relationships with Environmental Factors on the Qinghai-Tibetan Plateau 被引量:1
2
作者 ZHOU Lei SONG Ming-Hua +9 位作者 WANG Shao-Qiang FAN Jiang-Wen LIU Ji-Yuan ZHONG Hua-Ping YU Gui-Rui GAO Lu-Peng HU Zhong-Min CHEN Bin WU Wei-Xing SONG Ting 《Pedosphere》 SCIE CAS CSCD 2014年第2期232-242,共11页
The patterns of soil nitrogen (N) isotope composition at large spatial and temporal scales and their relationships to environmental factors illustrate N cycle and sources of N, and are integrative indicators of the ... The patterns of soil nitrogen (N) isotope composition at large spatial and temporal scales and their relationships to environmental factors illustrate N cycle and sources of N, and are integrative indicators of the terrestrial N cycle and its response to global change. The objectives of this study were: i) to investigate the patterns of soil N content and natural abundance of 15N (δ15N) values in different ecosystem types and soil profiles on the Qinghai-Tibetan Plateau; ii) to examine the effects of climatic factors and soil characteristics on the patterns of soil N content and soil δ15N values; and iii) to test the relationship between soil δ15N values and soil C/N ratios across ecosystems and soil profiles. Soil profiles were sampled at 51 sites along two transects 1 875 km in length and 200 km apart and distributed in forest, meadow and steppe on the Qinghai-Tibetan Plateau. Each site was sampled every 10 cm from a soil depth of 0 to 40 cm and each sample was analyzed for soil N content and δ15N values. Our results indicated that soil N and 515N values (0-40 cm) in meadows were much higher than in desert steppe. Soil N decreased with soil depth for each ecosystem, while variations of soil ~15N values along soil profiles were not statistically significant among most ecosystems but for mountain meadow, lowland meadow, and temperate steppe where soil δ15N values tended to increase with soil depth. The parabolic relationship between soil δ15N values and mean annual precipitation indicated that soil δ15N values increased with increasing precipitation in desert steppe up to 500 mm, and then decreased with increasing precipitation across all other ecosystems. Moreover, the parabolic relationship between δ15N values and mean annual temperature existed in all individual ecosystem types. Soil N and δ15N values (0-0 cm) increased with an increase in soil silt and clay contents. Furthermore, a threshold of C/N ratio of about 11 divided the parabolic relationship between soil δ15N values and soil C/N ratios into positive (C/N 〈 11) and negative (C/N 〉 11) parts, which was valid across all ecosystems and soil profiles. The large explanatory power of soil C/N ratios for soil δ15N values suggested that C and N concentrations, being strongly controlled by precipitation and temperature, were the primary factors determining patterns of soil δ15N on the Qinghai-Tibetan Plateau. 展开更多
关键词 desert steppe nitrogen isotope composition nutrient availability soil nitrogen
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部