Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine...Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine the concentration ratios Cl-/ NO3- or Cl-/ ClO4- for studying the adsorption of the three anions by variable charge soils. It was found that all the concentration ratios CCl- / CNO3- and CCl- / CClO4- in suspension were smaller than unity when soil samples were in equilibrium with mixed KCl and KNO3 or KCl and KClO4 solutions of equal concentration. The order of the amount of chloride, nitrate and perchlorate adsorbed by variable charge soils was Cl-> NO3-> ClO4- when the soils adsorbed these anions from the solution containing equal concentrations of Cl-, NO3- and ClO4-. Such factors as the pH of the suspension, the iron oxide content of the soil etc. could affect the amounts and the ratios of anions adsorbed. The adsorption was chiefly caused by coulombic attraction, but a covalent force between the anion and the metal atom on the surface of soil particles may also be involved, at least for Cl- ions, even for NO3- ions.展开更多
High quality micro-Raman spectra of the LiClO4 droplet with mass of nanogram scale were obtained at various concentrations from dilute to supersaturated state. From component band analysis of the v1-ClO4^- band, four ...High quality micro-Raman spectra of the LiClO4 droplet with mass of nanogram scale were obtained at various concentrations from dilute to supersaturated state. From component band analysis of the v1-ClO4^- band, four peaks at 933.3, 936.8, 942.1 and 950.7 cm^-1 were identified and assigned to free solvated perchlorate anion, solvent-shared ion pair, contact ion pair and com- plex ion aggregates, respectively. As expected, the signature of free solvated CIO4 ion was observed to decrease in intensity with the increase in concentration. The intensity of the signature from solvent-shared ion pair was observed to rise with in- crease in concentration from 1.8 mol/kg to 5.0 mol/kg before decreasing as the concentration was further increased to 5.6 mol/kg. Signatures of contact ion pair and of complex ion aggregates were shown to increase as the concentration was enhanced. Based upon the Eigen mechanism, we show that three association equilibria can be used to describe the transfor- mations between free solvated perchlorate anion, solvent-shared ion pair, contact ion pair and complex ion aggregates. The overall association constant, K, and the stepwise association constants Ki (i = 1 to 3) in the Eigen mechanism were determined separately with values of 0.025 ± 0.003, 0.023 ± 0.002, 0.068 ± 0.033 and 0.686 ± 0.174. Based on these constants, the electronic performance can be reasonably predicted by the optimum choice of electrolyte concentrations.展开更多
文摘Two cells consisting of a chloride-selective electrode and a nitrate-selective electrode or of a chloride-selective electrode and a perchlorate-selective electrode were directly put in the soil suspension to determine the concentration ratios Cl-/ NO3- or Cl-/ ClO4- for studying the adsorption of the three anions by variable charge soils. It was found that all the concentration ratios CCl- / CNO3- and CCl- / CClO4- in suspension were smaller than unity when soil samples were in equilibrium with mixed KCl and KNO3 or KCl and KClO4 solutions of equal concentration. The order of the amount of chloride, nitrate and perchlorate adsorbed by variable charge soils was Cl-> NO3-> ClO4- when the soils adsorbed these anions from the solution containing equal concentrations of Cl-, NO3- and ClO4-. Such factors as the pH of the suspension, the iron oxide content of the soil etc. could affect the amounts and the ratios of anions adsorbed. The adsorption was chiefly caused by coulombic attraction, but a covalent force between the anion and the metal atom on the surface of soil particles may also be involved, at least for Cl- ions, even for NO3- ions.
基金supported by the National Natural Science Foundation of (41175119 20933001 and 20873006)+3 种基金the National Key Program for Basic Research of China (2009CB220100) the 111 Project B07012the Trans-Century Training Program Foundation for the Talentsalso supported by a grant-in-aid for Youth Innovation Fund from Central South University of Forestry and Technology (104︱0261)
文摘High quality micro-Raman spectra of the LiClO4 droplet with mass of nanogram scale were obtained at various concentrations from dilute to supersaturated state. From component band analysis of the v1-ClO4^- band, four peaks at 933.3, 936.8, 942.1 and 950.7 cm^-1 were identified and assigned to free solvated perchlorate anion, solvent-shared ion pair, contact ion pair and com- plex ion aggregates, respectively. As expected, the signature of free solvated CIO4 ion was observed to decrease in intensity with the increase in concentration. The intensity of the signature from solvent-shared ion pair was observed to rise with in- crease in concentration from 1.8 mol/kg to 5.0 mol/kg before decreasing as the concentration was further increased to 5.6 mol/kg. Signatures of contact ion pair and of complex ion aggregates were shown to increase as the concentration was enhanced. Based upon the Eigen mechanism, we show that three association equilibria can be used to describe the transfor- mations between free solvated perchlorate anion, solvent-shared ion pair, contact ion pair and complex ion aggregates. The overall association constant, K, and the stepwise association constants Ki (i = 1 to 3) in the Eigen mechanism were determined separately with values of 0.025 ± 0.003, 0.023 ± 0.002, 0.068 ± 0.033 and 0.686 ± 0.174. Based on these constants, the electronic performance can be reasonably predicted by the optimum choice of electrolyte concentrations.