Extremely hard and abrasive rocks pose great challenges to the past and ongoing TBM projects by increasing cutter wear and reducing penetration rates.A considerable amount of research has been conducted to improve the...Extremely hard and abrasive rocks pose great challenges to the past and ongoing TBM projects by increasing cutter wear and reducing penetration rates.A considerable amount of research has been conducted to improve the performance of TBMs in those challenging grounds by either improving the capacity of TBMs or developing assisting rock breakage methods.This paper first highlights the challenges of hard and abrasive rocks on TBM tunneling through case studies.It then presents the development of hard rock TBMs and reviews the technologies that can be used individually or as assistance to mechanical excavators to break hard rocks.Emphases are placed on technologies of high pressure waterjet,laser and microwave.The state of the art of field and laboratory research,problems and research directions of those technologies are discussed.The assisting methods are technically feasible;however,the main challenges of using those methods in the field are that the energy consumption can be over 10 times high and that the existing equipments have robustness problems.More research should be conducted to study the overall energy consumption using TBMs and the assisting methods.Pulsed waterjet,laser and microwave technologies should also be developed to make the assistance economically viable.展开更多
China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system i...China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.展开更多
Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was...Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was established;the fluid-structure couplingof water jet and coal was implemented by penalty function and convection calculation.The dynamic process of coal breaking under a water jet was simulated and analyzed bycombining the united fracture criteria of the maximum tensile strain and the maximal shearstrain in the two cases of damage to coal and damage failure to coal.展开更多
At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet veloci...At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.展开更多
The drum shearer and high pressure water jet combined cutting system is an effective technology to cut hard coal-rock, but one problem of the technology is the choice of pick and nozzle location parameters. In order t...The drum shearer and high pressure water jet combined cutting system is an effective technology to cut hard coal-rock, but one problem of the technology is the choice of pick and nozzle location parameters. In order to solve the problem, the process and mechanism of combined cutting arc studied and mining seepage catastrophe theory is used to construct the mathematic and physical model of combined cutting hard coal-rock. Based on the model and detailed analysis of combined cutting mechanism, the single pick and nozzle combined cutting test-bed is built to test the main pick and nozzle location parameters of drum shearer and water jet combined cutting system. Test results show that the best vertical distance between the pick-tip and nozzle center point is the sum of cutting thickness and proper target distance in the Y axial direction; the best horizontal distance is the length between pick-tip point and coal-rock surface bursting crack point in the X axial direction. The best incident angle of water jet should be the same as the bursting crack line's angle in theory, but considering other important factors comprehensively, it is more reasonable when the incident angle of water jet is 90°.展开更多
Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pr...Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pre-drainage.This study chose the common sandstone and silicon limestone as the rock sample.A series of experiments were completed in the case of dry drilling,existing technology drilling,combined drilling with high pressure water jet and combined drilling with abrasive water jet,respectively.The drilling efficiency and performance were contrasted and analyzed in detail.The results indicate that it is better to choose the method of combined drilling with the high-pressure water jet for soft rocks.The method of combined drilling with abrasive water jet is feasible for the hard rock drilling and has higher drilling efficiency and performance.In this paper,compared with the existing technology,the drilling depth has increased by about 65%,the axial force and torque have reduced by about 14%and 17%,respectively,and the drill wear reduces obviously in the same conditions.展开更多
This paper presented a method to create artificial fractures along the existing gas drainage borehole and increase the permeability of the coalbed using a high pressure waterjet cutting system.The field work conducted...This paper presented a method to create artificial fractures along the existing gas drainage borehole and increase the permeability of the coalbed using a high pressure waterjet cutting system.The field work conducted in Rujigou Colliery, Shenhua Ningxia Coal Group demonstrate that the coalbed permeability is increased, and accordingly, gas drainage efficiency is improved up to 3 to 6 times over the traditional methods using high pressure waterjet technique.Also, based on the monitoring data, the conceptual model for gas drainage process associated with different mining activities has been proposed, and few major advantages using waterjet assistance method have been identified.展开更多
In order to rescue a trapped miner and clean out roadways quickly in a high gas mine shaft after a mining mishap, a special portable cold-cutting equipment is needed, the main technology parameters were calculated acc...In order to rescue a trapped miner and clean out roadways quickly in a high gas mine shaft after a mining mishap, a special portable cold-cutting equipment is needed, the main technology parameters were calculated according to the advanced cold-cutting technology of high pressure abrasive water jet and the portable mixed abrasive water jet equipment (PAWE) was designed to meet the needs of emergency rescue in high gas mine shafts. Tested the PAWE in a high gas environment, and the result shows that the maximum cutting depth of solid iron pipe is 18 mm and the recoilforce of the sprayer is 28.9 N under the conditions that actual cutting pressure is 29 MPa, starting target distance is 10 ram, cutting speed is 180 mm/min and concentration of abrasive is 32%. The course of the experiment in the high gas environment was smooth and continuous, without any explosion. The PAWE is easy to move and operate, but the nozzle which was worn badly in the sprayer should be changed every 8 minutes.展开更多
The possibility of applying a high-pressure hydro-jet for renewal of the grinding wheel cutting ability was presented.This work was conducted in the internal cylindrical grinding process of the Titanium Grade 2 alloy,...The possibility of applying a high-pressure hydro-jet for renewal of the grinding wheel cutting ability was presented.This work was conducted in the internal cylindrical grinding process of the Titanium Grade 2 alloy,which belongs to the group of hard-to-cut materials.The analysis shows that the impact on the erosion effectiveness of the grinding wheel active surface(GWAS)depends upon the hydro-jet inclination angle and working pressure.Experimental results reveal that application of hydro-jet working pressure of 25 MPa allows for effective cleansing of the grinding wheel surface.Depending on the initial GWAS condition and the level of its smearing with chips of machined material,it is possible to increase the number of grinding wheel unevenness apexes by as much as 4.5 times.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
基金Projects(3205009419,3205002001C3)supported by Fundamental Research Funds for Central Universities,China。
文摘Extremely hard and abrasive rocks pose great challenges to the past and ongoing TBM projects by increasing cutter wear and reducing penetration rates.A considerable amount of research has been conducted to improve the performance of TBMs in those challenging grounds by either improving the capacity of TBMs or developing assisting rock breakage methods.This paper first highlights the challenges of hard and abrasive rocks on TBM tunneling through case studies.It then presents the development of hard rock TBMs and reviews the technologies that can be used individually or as assistance to mechanical excavators to break hard rocks.Emphases are placed on technologies of high pressure waterjet,laser and microwave.The state of the art of field and laboratory research,problems and research directions of those technologies are discussed.The assisting methods are technically feasible;however,the main challenges of using those methods in the field are that the energy consumption can be over 10 times high and that the existing equipments have robustness problems.More research should be conducted to study the overall energy consumption using TBMs and the assisting methods.Pulsed waterjet,laser and microwave technologies should also be developed to make the assistance economically viable.
基金Project(2020YFF0426370) supported by the National Key Research and Development Program of ChinaProject(SF-202010) supported by the Water Conservancy Technology Demonstration,China。
文摘China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.
基金Supported by the National Basic Research Program of China(973 Program)(2005CB221504)the National Natural Science Foundation of China(50534080)the National Science and Technology Supporting Program of China(the 11th Five-Year Program)(2006BAK03B03)
文摘Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was established;the fluid-structure couplingof water jet and coal was implemented by penalty function and convection calculation.The dynamic process of coal breaking under a water jet was simulated and analyzed bycombining the united fracture criteria of the maximum tensile strain and the maximal shearstrain in the two cases of damage to coal and damage failure to coal.
基金Projects(51205171,51376081)supported by the National Natural Science Foundation of ChinaProject(1201026B)supported by the Postdoctoral Science Foundation of Jiangsu Province,China
文摘At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.
基金Project(2012AA062104) supported by the National High Technology Research and Development Program of ChinaProject(201104583) supported by the Postdoctoral Special Funded Projects,China
文摘The drum shearer and high pressure water jet combined cutting system is an effective technology to cut hard coal-rock, but one problem of the technology is the choice of pick and nozzle location parameters. In order to solve the problem, the process and mechanism of combined cutting arc studied and mining seepage catastrophe theory is used to construct the mathematic and physical model of combined cutting hard coal-rock. Based on the model and detailed analysis of combined cutting mechanism, the single pick and nozzle combined cutting test-bed is built to test the main pick and nozzle location parameters of drum shearer and water jet combined cutting system. Test results show that the best vertical distance between the pick-tip and nozzle center point is the sum of cutting thickness and proper target distance in the Y axial direction; the best horizontal distance is the length between pick-tip point and coal-rock surface bursting crack point in the X axial direction. The best incident angle of water jet should be the same as the bursting crack line's angle in theory, but considering other important factors comprehensively, it is more reasonable when the incident angle of water jet is 90°.
基金supported by the Fundamental Research Funds for the Central University (Nos.CDJZR10248801,CDJZR122488 01)the National Natural Science Foundation of China (No.51104191)
文摘Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pre-drainage.This study chose the common sandstone and silicon limestone as the rock sample.A series of experiments were completed in the case of dry drilling,existing technology drilling,combined drilling with high pressure water jet and combined drilling with abrasive water jet,respectively.The drilling efficiency and performance were contrasted and analyzed in detail.The results indicate that it is better to choose the method of combined drilling with the high-pressure water jet for soft rocks.The method of combined drilling with abrasive water jet is feasible for the hard rock drilling and has higher drilling efficiency and performance.In this paper,compared with the existing technology,the drilling depth has increased by about 65%,the axial force and torque have reduced by about 14%and 17%,respectively,and the drill wear reduces obviously in the same conditions.
文摘This paper presented a method to create artificial fractures along the existing gas drainage borehole and increase the permeability of the coalbed using a high pressure waterjet cutting system.The field work conducted in Rujigou Colliery, Shenhua Ningxia Coal Group demonstrate that the coalbed permeability is increased, and accordingly, gas drainage efficiency is improved up to 3 to 6 times over the traditional methods using high pressure waterjet technique.Also, based on the monitoring data, the conceptual model for gas drainage process associated with different mining activities has been proposed, and few major advantages using waterjet assistance method have been identified.
文摘In order to rescue a trapped miner and clean out roadways quickly in a high gas mine shaft after a mining mishap, a special portable cold-cutting equipment is needed, the main technology parameters were calculated according to the advanced cold-cutting technology of high pressure abrasive water jet and the portable mixed abrasive water jet equipment (PAWE) was designed to meet the needs of emergency rescue in high gas mine shafts. Tested the PAWE in a high gas environment, and the result shows that the maximum cutting depth of solid iron pipe is 18 mm and the recoilforce of the sprayer is 28.9 N under the conditions that actual cutting pressure is 29 MPa, starting target distance is 10 ram, cutting speed is 180 mm/min and concentration of abrasive is 32%. The course of the experiment in the high gas environment was smooth and continuous, without any explosion. The PAWE is easy to move and operate, but the nozzle which was worn badly in the sprayer should be changed every 8 minutes.
文摘The possibility of applying a high-pressure hydro-jet for renewal of the grinding wheel cutting ability was presented.This work was conducted in the internal cylindrical grinding process of the Titanium Grade 2 alloy,which belongs to the group of hard-to-cut materials.The analysis shows that the impact on the erosion effectiveness of the grinding wheel active surface(GWAS)depends upon the hydro-jet inclination angle and working pressure.Experimental results reveal that application of hydro-jet working pressure of 25 MPa allows for effective cleansing of the grinding wheel surface.Depending on the initial GWAS condition and the level of its smearing with chips of machined material,it is possible to increase the number of grinding wheel unevenness apexes by as much as 4.5 times.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.