The amphipod crustacean Eogammarus sinensis has useful features that make it suitable for use in the aquaculture of fish and large decapod crustaceans.In this study,we investigated the effects of temperature and salin...The amphipod crustacean Eogammarus sinensis has useful features that make it suitable for use in the aquaculture of fish and large decapod crustaceans.In this study,we investigated the effects of temperature and salinity on the development,fecundity,survival,and growth rate of E.sinensis.The results show that temperature significantly affected E.sinensis development,but salinity.As temperature increased,the duration of E.sinensis embryonic development decreased.Fecundity was affected significantly by temperature and the combination of temperature and salinity,but by salinity alone.In addition,high temperatures accelerated E.sinensis juvenile growth rates,whereas high salinity reduced it.Therefore,our data suggest that E.sinensis tolerates a wide range of salinities and that temperature has more significant effects than salinity on the embryonic development,fecundity,and growth of E.sinensis.Our results shall be useful for mass production of this species for use in aquaculture.展开更多
基金Supported by the Special Scientific Research Funds for Central Non-Profit Institutes,Yellow Sea Fisheries Research Institute(No.20603022013022)the National Key Technology R&D Program of China(Nos.2011BAD13B02,2011BAD13B06)the National Basic Research Program of China(973 Program)(No.2011CB409805)
文摘The amphipod crustacean Eogammarus sinensis has useful features that make it suitable for use in the aquaculture of fish and large decapod crustaceans.In this study,we investigated the effects of temperature and salinity on the development,fecundity,survival,and growth rate of E.sinensis.The results show that temperature significantly affected E.sinensis development,but salinity.As temperature increased,the duration of E.sinensis embryonic development decreased.Fecundity was affected significantly by temperature and the combination of temperature and salinity,but by salinity alone.In addition,high temperatures accelerated E.sinensis juvenile growth rates,whereas high salinity reduced it.Therefore,our data suggest that E.sinensis tolerates a wide range of salinities and that temperature has more significant effects than salinity on the embryonic development,fecundity,and growth of E.sinensis.Our results shall be useful for mass production of this species for use in aquaculture.