Fluctuation history of Midui glacier in the southeastern Tibet since the Little Ice Age(LIA) was reconstructed by the dating of lateral and terminal moraines using tree rings.Four conversions of glacier advance/stabil...Fluctuation history of Midui glacier in the southeastern Tibet since the Little Ice Age(LIA) was reconstructed by the dating of lateral and terminal moraines using tree rings.Four conversions of glacier advance/stabilization to retreat were identified at around 1767,1875,1924 and 1964.The glacier reached its LIA maximum position at 1767.The fluctuations are consistent with those of other glaciers from the Tibetan Plateau,the Rockies and the Alps,suggesting high spatial coherency of glacier fluctuations in the Northern Hemisphere.Comparison with the summer temperature reconstruction in the southeastern Tibetan Plateau indicated that the Midui glacier fluctuation may be related to temperature variation on the centennial timescale.On the decadal scale,the fluctuation could correspond to cold/warm variation with an 8-year lag on average.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.40801033 and 41130529)DFG,German Research Foundation (Grant No.BR1895/21-1)
文摘Fluctuation history of Midui glacier in the southeastern Tibet since the Little Ice Age(LIA) was reconstructed by the dating of lateral and terminal moraines using tree rings.Four conversions of glacier advance/stabilization to retreat were identified at around 1767,1875,1924 and 1964.The glacier reached its LIA maximum position at 1767.The fluctuations are consistent with those of other glaciers from the Tibetan Plateau,the Rockies and the Alps,suggesting high spatial coherency of glacier fluctuations in the Northern Hemisphere.Comparison with the summer temperature reconstruction in the southeastern Tibetan Plateau indicated that the Midui glacier fluctuation may be related to temperature variation on the centennial timescale.On the decadal scale,the fluctuation could correspond to cold/warm variation with an 8-year lag on average.