福建沿海地区第四系较为发育,是研究晚更新世以来相对海平面变化的理想区域。本文以福建宁德NDQK5岩芯中产出的高分辨率介形类化石为研究对象,结合加速器质谱法(accelerator mass spectrometry,AMS)14C和光释光测年技术建立岩芯年代框架...福建沿海地区第四系较为发育,是研究晚更新世以来相对海平面变化的理想区域。本文以福建宁德NDQK5岩芯中产出的高分辨率介形类化石为研究对象,结合加速器质谱法(accelerator mass spectrometry,AMS)14C和光释光测年技术建立岩芯年代框架,重建了中全新世期间福建沿海地区的相对海平面变化。结果显示,NDQK5岩芯中的介形类化石记录主要分布于4~17.1 m段,对应年代约为8.2~6.9 ka BP。岩芯内共计识别出海相介形类23属26种,根据优势种以及特征种的相对丰度变化特征可将岩芯内的介形类动物群划分为3个组合:①介形类组合A以Bicornucythere bisanensis和Sinocytheridea impressa为主,代表潮下带环境;②介形类组合B以Sinocytheridea impressa和Neomonoceratina delicata为优势种,指示近岸内陆架的沉积环境;③介形类组合C以Sinocytheridea impressa和Loxoconcha ocellifera为主,代表潮间带的沉积环境。基于介形类组合的分布特征,本文推断福建沿海地区海平面约在8.2~7.4 ka BP期间持续上升,并在约7.9~7.4 ka BP区间达到最高;7.4~7.0 ka BP期间海平面下降,随后再次上升。因此,介形类化石记录指示福建沿海地区在全新世高海平面背景下依然存在相对海平面的次一级波动。同时,结合已有福建沿海地区海平面变化驱动机制的研究结果,本研究推断8.2~7 ka BP期间福建沿海地区的海平面变化可能主要受控于冰盖融水;7 ka BP后该地区的海平面波动可能受控于“冰川-水均衡调整”作用。展开更多
重建高质量的全新世相对海平面变化曲线,可为海岸带人类社会科学预测及应对未来海平面上升风险提供重要的地质历史依据和长时间尺度的数据参考。目前已发表了多条福建海岸带全新世相对海平面变化曲线,然而已有曲线反映的相对海平面变化...重建高质量的全新世相对海平面变化曲线,可为海岸带人类社会科学预测及应对未来海平面上升风险提供重要的地质历史依据和长时间尺度的数据参考。目前已发表了多条福建海岸带全新世相对海平面变化曲线,然而已有曲线反映的相对海平面变化历史存在较大差异,甚至是矛盾结果。同时,相对海平面长期变化机制及影响因素也不明确。本研究收集、整理了福建沿海已发表的全新世相对海平面数据,对已有数据的年代、高程、指示意义等属性信息进行重新检查和校正,根据国际方法体系,建立了该区域一个标准化的全新世“相对海平面数据库”,共包括海平面数据183个。在此基础上,采用“变量误差–综合高斯(EIV-IGP)”统计学模型,提出了一条新的福建沿海全新世相对海平面变化曲线。并应用“冰川–水均衡调整”(GIA)理论,开展了相对海平面变化GIA模拟。最后,综合相对海平面变化地质记录及GIA模拟结果,得出以下结论:(1)福建沿海距今11.28~7.08 cal ka,相对海平面由(–23.55±6.94)m快速连续上升至(–1.51±1.80)m;距今7.08~4.08 cal ka,相对海平面由(–1.51±1.80)m缓慢上升至约(1.09±1.38)m;距今3.48 cal ka前后,相对海平面高于现代海平面约(1.35±1.23)m;此后,波动下降并逐渐接近现代位置;(2)“冰川–水均衡调整”作用是福建全新世相对海平面变化的主要长期作用机制;距今11.28~7.00 cal ka,相对海平面变化主要受冰盖融水控制;距今7.00 cal ka以来,“水均衡调整”作用逐渐占据主导;(3)福建沿海中–晚全新世(距今6.75~0.16 cal ka)期间,存在高于现今海面位置的“高海平面”现象;不同于传统构造运动主导观点,研究认为GIA引起的“陆地掀斜”和“海洋虹吸”作用,可能是该区域“高海平面”现象产生的主要原因;(4)福建沿海全新世相对海平面变化,存在一定程度的空间差异。不同岸段之间的沉积物压实、差异性构造运动和潮差变化等非GIA因素,可能是这一现象产生的重要原因。展开更多
According to the field survey and ^14C dating at Luhuitou, southern Hainan Island, a subsiding area, the authors conclude the high sea level history recorded by coral reef in the Holocene. At least 4 sea level high-st...According to the field survey and ^14C dating at Luhuitou, southern Hainan Island, a subsiding area, the authors conclude the high sea level history recorded by coral reef in the Holocene. At least 4 sea level high-stands can be identified from the distribution of coral reef ages: 7300 - 6000 cal.aBP, 4800 - 4700 cal.aBP, 4300 - 4200 cal.aBP and 3100 - 2900 cal.aBP. The highest sea level occurred around 7300 - 6700 cal.aBP, and biological-morphological zones took their shape during the stage. The later coral reefs developed in ponds, depressions, and developed outwards on both sides of Luhuitou peninsula. The modern coral reefs are developing in out reef flat and reef-front slope. Moreover, the time of high sea levels in the northern South China Sea recorded by coral reefs in the Luhuitou peninsula can link up with that in other parts of South China Sea. That means the high sea levels in the South China Sea during the Holocene, which are relative to the warming climate, have the global background.展开更多
Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate retttrn-period values of marine environmental variables in this region to ens...Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate retttrn-period values of marine environmental variables in this region to ensure the safety and success of maritime engineering and maritime exploration. In this study, we used numerical simulations to estimate extreme wave height, sea current velocity and sea-level height in westem Laizhou Bay. The results show that the sea-level rise starts at the mouth of the bay, increases toward west/southwest, and reaches its maximum in the deepest basin of the bay. The 100-year return-period values of sea level rise can reach 3.4-4.0m in the western bay. The elevation of the western part of the Qingdong Oil Field would remain above the sea sur- face during extreme low sea level, while the rest of the oil field would be 1,6-2.4m below the sea surface. The return-period value of wave height is strongly affected by water depth; in fact, its spatial distribution is similar to the isobath's. The 100-year return-period values of effective wave height can be 6m or higher in the central bay and be more than 1 m in the shallow water near shore. The 100-year return-period values of current velocity is about 1.2-1.8 ms-1 in the Qingdong Oil Field. These results provide scientific basis for ensuring construction safety and reducing construction cost,展开更多
The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and i...The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and identify their optimal habitat, we have developed a habitat suitability index (HSI) model using two potential important environmental variables -- sea surface temperature (SST) and sea surface height anomaly (SSHA) -- and fishery data from the main fishing ground (165°-180°E) during June and July of 1999-2003. A geometric mean model (GMM), minimum model (MM) and arithmetic weighted model (AWM) with different weights were compared and the best HSI model was selected using Akaike's information criterion (AIC). The performance of the developed HSI model was evaluated using fishery data for 2004. This study suggests that the highest catch per unit effort (CPUE) and fishing effort are closely related to SST and SSHA. The best SST- and SSHA-based suitability index (SI) regression models were SISST-based = 0.7SIeffort-SST + 0.3 SICPUE-SST, and SISSHA-based =0.5Sleffort-SSHA + 0.5SICPUE-SSHA, respectively, showing that fishing effort is more important than CPUE in the estimation of SI. The best HSI model was the AWM, defined as HSI=0.3SISSHA-based+ 0.7SISSHA-based, indicating that SSHA is more important than SST in estimating the HSI of squid. In 2004, monthly HSI values greater than 0.6 coincided with the distribution of productive fishing ground and high CPUE in June and July, suggesting that the models perform well. The proposed model provides an important tool in our efforts to develop forecasting capacity of squid spatial dynamics.展开更多
The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array ...The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA (Map of Sea Level Anomaly) products merged with the ERS and TOPEX/POSEIDON (T/P) data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream (22°-24°N, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.展开更多
Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model.The model analysis reveals the influence o...Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model.The model analysis reveals the influence of the variability of Kuroshio transport east of Taiwan on the intrusion to the northeast of Taiwan:high correlation (r=0.92) with the on-shore volume flux in the lower layer (50 200 m) ;low correlation (r=0.50) with the on-shore flux in the upper layer (0 50 m) .Spatial distribution of correlations between volume fluxes and sea surface height suggests that inter-annual variability of the Kuroshio flux east of Taiwan and its subsurface water intruding to the shelf lag behind the sea surface height anomalies in the central Pacific at 162 E by about 14 months,and could be related to wind-forced variation in the interior North Pacific that propagates westward as Rossby waves.The intrusion of Kuroshio surface water is also influenced by local winds.The intruding Kuroshio subsurface water causes variations of temperature and salinity of bottom waters on the southern ECS shelf.The influence of the intruding Kuroshio subsurface water extends widely from the shelf slope northeast of Taiwan northward to the central ECS near the 60 m isobath,and northeastward to the region near the 90 m isobath.展开更多
文摘福建沿海地区第四系较为发育,是研究晚更新世以来相对海平面变化的理想区域。本文以福建宁德NDQK5岩芯中产出的高分辨率介形类化石为研究对象,结合加速器质谱法(accelerator mass spectrometry,AMS)14C和光释光测年技术建立岩芯年代框架,重建了中全新世期间福建沿海地区的相对海平面变化。结果显示,NDQK5岩芯中的介形类化石记录主要分布于4~17.1 m段,对应年代约为8.2~6.9 ka BP。岩芯内共计识别出海相介形类23属26种,根据优势种以及特征种的相对丰度变化特征可将岩芯内的介形类动物群划分为3个组合:①介形类组合A以Bicornucythere bisanensis和Sinocytheridea impressa为主,代表潮下带环境;②介形类组合B以Sinocytheridea impressa和Neomonoceratina delicata为优势种,指示近岸内陆架的沉积环境;③介形类组合C以Sinocytheridea impressa和Loxoconcha ocellifera为主,代表潮间带的沉积环境。基于介形类组合的分布特征,本文推断福建沿海地区海平面约在8.2~7.4 ka BP期间持续上升,并在约7.9~7.4 ka BP区间达到最高;7.4~7.0 ka BP期间海平面下降,随后再次上升。因此,介形类化石记录指示福建沿海地区在全新世高海平面背景下依然存在相对海平面的次一级波动。同时,结合已有福建沿海地区海平面变化驱动机制的研究结果,本研究推断8.2~7 ka BP期间福建沿海地区的海平面变化可能主要受控于冰盖融水;7 ka BP后该地区的海平面波动可能受控于“冰川-水均衡调整”作用。
文摘重建高质量的全新世相对海平面变化曲线,可为海岸带人类社会科学预测及应对未来海平面上升风险提供重要的地质历史依据和长时间尺度的数据参考。目前已发表了多条福建海岸带全新世相对海平面变化曲线,然而已有曲线反映的相对海平面变化历史存在较大差异,甚至是矛盾结果。同时,相对海平面长期变化机制及影响因素也不明确。本研究收集、整理了福建沿海已发表的全新世相对海平面数据,对已有数据的年代、高程、指示意义等属性信息进行重新检查和校正,根据国际方法体系,建立了该区域一个标准化的全新世“相对海平面数据库”,共包括海平面数据183个。在此基础上,采用“变量误差–综合高斯(EIV-IGP)”统计学模型,提出了一条新的福建沿海全新世相对海平面变化曲线。并应用“冰川–水均衡调整”(GIA)理论,开展了相对海平面变化GIA模拟。最后,综合相对海平面变化地质记录及GIA模拟结果,得出以下结论:(1)福建沿海距今11.28~7.08 cal ka,相对海平面由(–23.55±6.94)m快速连续上升至(–1.51±1.80)m;距今7.08~4.08 cal ka,相对海平面由(–1.51±1.80)m缓慢上升至约(1.09±1.38)m;距今3.48 cal ka前后,相对海平面高于现代海平面约(1.35±1.23)m;此后,波动下降并逐渐接近现代位置;(2)“冰川–水均衡调整”作用是福建全新世相对海平面变化的主要长期作用机制;距今11.28~7.00 cal ka,相对海平面变化主要受冰盖融水控制;距今7.00 cal ka以来,“水均衡调整”作用逐渐占据主导;(3)福建沿海中–晚全新世(距今6.75~0.16 cal ka)期间,存在高于现今海面位置的“高海平面”现象;不同于传统构造运动主导观点,研究认为GIA引起的“陆地掀斜”和“海洋虹吸”作用,可能是该区域“高海平面”现象产生的主要原因;(4)福建沿海全新世相对海平面变化,存在一定程度的空间差异。不同岸段之间的沉积物压实、差异性构造运动和潮差变化等非GIA因素,可能是这一现象产生的重要原因。
基金We gratefully acknowledge the financial supports from the National Natural Science Foundation of China(Grant No.49976015).
文摘According to the field survey and ^14C dating at Luhuitou, southern Hainan Island, a subsiding area, the authors conclude the high sea level history recorded by coral reef in the Holocene. At least 4 sea level high-stands can be identified from the distribution of coral reef ages: 7300 - 6000 cal.aBP, 4800 - 4700 cal.aBP, 4300 - 4200 cal.aBP and 3100 - 2900 cal.aBP. The highest sea level occurred around 7300 - 6700 cal.aBP, and biological-morphological zones took their shape during the stage. The later coral reefs developed in ponds, depressions, and developed outwards on both sides of Luhuitou peninsula. The modern coral reefs are developing in out reef flat and reef-front slope. Moreover, the time of high sea levels in the northern South China Sea recorded by coral reefs in the Luhuitou peninsula can link up with that in other parts of South China Sea. That means the high sea levels in the South China Sea during the Holocene, which are relative to the warming climate, have the global background.
基金supported by the National Natural Science Foundation for the Project ‘Formation and development of the muddy deposition in the central south Yellow Sea, and its relation with climate and environmental change (41030856)’the Shandong Natural Science Foun-dation for the Project ‘Seasonal variation and its mechanism of suspended sediment distribution along the Shandong Peninsula (BS2012HZ022)’+2 种基金the project of ‘Ocean-Land interaction and coastal geological hazard (GZH201100203)’the NSFC project ‘Mechanism on strong wind’s effect on submarine pipeline’s stability’ (41006024)the Taishan Scholar Project
文摘Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate retttrn-period values of marine environmental variables in this region to ensure the safety and success of maritime engineering and maritime exploration. In this study, we used numerical simulations to estimate extreme wave height, sea current velocity and sea-level height in westem Laizhou Bay. The results show that the sea-level rise starts at the mouth of the bay, increases toward west/southwest, and reaches its maximum in the deepest basin of the bay. The 100-year return-period values of sea level rise can reach 3.4-4.0m in the western bay. The elevation of the western part of the Qingdong Oil Field would remain above the sea sur- face during extreme low sea level, while the rest of the oil field would be 1,6-2.4m below the sea surface. The return-period value of wave height is strongly affected by water depth; in fact, its spatial distribution is similar to the isobath's. The 100-year return-period values of effective wave height can be 6m or higher in the central bay and be more than 1 m in the shallow water near shore. The 100-year return-period values of current velocity is about 1.2-1.8 ms-1 in the Qingdong Oil Field. These results provide scientific basis for ensuring construction safety and reducing construction cost,
基金Supported by the PhD Programs Foundation of Ministry of Education of China (No. 20093104110002)the National High Technology Research and Development Program of China (863 Program) (Nos. 2007AA092201, 2007AA092202)+2 种基金the National Natural Science Foundation (No. NSFC40876090)the Shanghai Leading Academic Discipline Project (No. S30702)Y. Chen's involvement in the project was partially supported by the Shanghai Dongfang Scholar Program
文摘The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and identify their optimal habitat, we have developed a habitat suitability index (HSI) model using two potential important environmental variables -- sea surface temperature (SST) and sea surface height anomaly (SSHA) -- and fishery data from the main fishing ground (165°-180°E) during June and July of 1999-2003. A geometric mean model (GMM), minimum model (MM) and arithmetic weighted model (AWM) with different weights were compared and the best HSI model was selected using Akaike's information criterion (AIC). The performance of the developed HSI model was evaluated using fishery data for 2004. This study suggests that the highest catch per unit effort (CPUE) and fishing effort are closely related to SST and SSHA. The best SST- and SSHA-based suitability index (SI) regression models were SISST-based = 0.7SIeffort-SST + 0.3 SICPUE-SST, and SISSHA-based =0.5Sleffort-SSHA + 0.5SICPUE-SSHA, respectively, showing that fishing effort is more important than CPUE in the estimation of SI. The best HSI model was the AWM, defined as HSI=0.3SISSHA-based+ 0.7SISSHA-based, indicating that SSHA is more important than SST in estimating the HSI of squid. In 2004, monthly HSI values greater than 0.6 coincided with the distribution of productive fishing ground and high CPUE in June and July, suggesting that the models perform well. The proposed model provides an important tool in our efforts to develop forecasting capacity of squid spatial dynamics.
文摘The relationship between the Kuroshio transport to the east of Taiwan and the SSHA (Sea Surface Height Anomaly) field is studied based on the World Ocean Circulation Experiment (WOCE) PCM-1 moored current meter array observation, the satellite altimeter data from the MSLA (Map of Sea Level Anomaly) products merged with the ERS and TOPEX/POSEIDON (T/P) data sets, and the WOCE satellite-tracked drifting buoy data. It is confirmed that the Kuroshio transport across PCM-1 array highly correlates with the SSHA upstream (22°-24°N, 121.75°-124°E). The SSHA is not locally generated by the developed Kuroshio meandering but is from the interior ocean and is propagating westward or northwestward. During the period from October 1992 to January 1998, two events of the northwestward propagating negative SSHA occurred, during which the SSHA merged into the Kuroshio and caused the remarkable low transport events in contrast to the normal westward propagating negative SSHA. It is also shown that the lower Kuroshio transport event would be generated in different ways. The negative anomaly in the upstream of PCM-1 array can reduce the Kuroshio transport by either offshore or onshore Kuroshio meandering. The positive anomaly, which is strong enough to detour the Kuroshio, can cause an offshore meandering and a low transport event at the PCM-1 array.
基金supported by the National Basic Research Program of China(973 Program,No.2010CB428904,No.2011CB403606)Natural Science Foundation of China(No.41128006,No.40830854)
文摘Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model.The model analysis reveals the influence of the variability of Kuroshio transport east of Taiwan on the intrusion to the northeast of Taiwan:high correlation (r=0.92) with the on-shore volume flux in the lower layer (50 200 m) ;low correlation (r=0.50) with the on-shore flux in the upper layer (0 50 m) .Spatial distribution of correlations between volume fluxes and sea surface height suggests that inter-annual variability of the Kuroshio flux east of Taiwan and its subsurface water intruding to the shelf lag behind the sea surface height anomalies in the central Pacific at 162 E by about 14 months,and could be related to wind-forced variation in the interior North Pacific that propagates westward as Rossby waves.The intrusion of Kuroshio surface water is also influenced by local winds.The intruding Kuroshio subsurface water causes variations of temperature and salinity of bottom waters on the southern ECS shelf.The influence of the intruding Kuroshio subsurface water extends widely from the shelf slope northeast of Taiwan northward to the central ECS near the 60 m isobath,and northeastward to the region near the 90 m isobath.