Ventilation system is significant in underground metal mine of alpine region.Reasonable evaluation of ventilation effectiveness will lead to a practical improvement for the maintenance and management of ventilation sy...Ventilation system is significant in underground metal mine of alpine region.Reasonable evaluation of ventilation effectiveness will lead to a practical improvement for the maintenance and management of ventilation system.However,it is difficult to make an effective evaluation of ventilation system due to the lack of classification criteria with respect to underground metal mine in alpine region.This paper proposes a novel evaluation method called the cloud model-clustering analysis(CMCA).Cloud model(CM)is utilized to process collected data of ventilation system,and they are converted into cloud descriptors by CM.Cloud similarity(CS)based Euclidean distance(ED)is proposed to make clustering analysis of assessed samples.Then the classification of assessed samples will be identified by clustering analysis results.A case study is developed based on CMCA.Evaluation results show that ventilation effectiveness can be well classified.Moreover,CM is used alone to make comparison of evaluation results obtained by CMCA.Then the availability and validity of CMCA is verified.Meanwhile,difference of CS based ED and classical ED is analyzed.Two new clustering analysis methods are introduced to make comparison with CMCA.Then the ability of proposed CMCA to meet evaluation requirements of ventilation system is verified.展开更多
Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA), this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu B...Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA), this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu Ba- sin, which is situated in the easternmost end of the Tianshan Mountains, Xinjiang Uygur Autonomous Region, China. For the zonal vegetation, community diversity of mountain vegetation is higher than that of the desert vegetation due to environmental factors. The CCA ordination diagram revealed that the composition and distribution of vegetation types are mainly determined by altitude, soil pH and soil salt content. With increasing elevation, the soil pH and total salt content decrease but the contents of soil organic matter, soil water, total nitrogen and total phosphorus increase gradu- ally. In the CCA ordination diagrams, the sample plots and main species can be divided into five types according to their adaptations to the environmental factors. Type Ⅰ is composed of desert vegetation distributed on the low moun- tains, hills, plains and deserts below an elevation of 1900 m; type Ⅱ is distributed in the mountain and desert ecotone with an elevation of 1900-2300 m, and includes steppe desert, desert steppe and wetland meadow; type Ⅲ is very sim- ply composed of only salinized meadow; type Ⅳ is distributed above an elevation of 2300 m, containing mountain steppe, meadow steppe, subalpine meadow and alpine meadow; type Ⅴ only contains salinized meadow. The results show that with increasing elevation, species combination changes from the xerophytic shrubs, semi-shrubs and herbs distributed in the low altitude zone with arid climate to the cold-tolerant perennial herbs growing in the high altitudinal zone with cold climate.展开更多
基金Project(2018YFC0808404)supported by National Key Research and Development Program of China。
文摘Ventilation system is significant in underground metal mine of alpine region.Reasonable evaluation of ventilation effectiveness will lead to a practical improvement for the maintenance and management of ventilation system.However,it is difficult to make an effective evaluation of ventilation system due to the lack of classification criteria with respect to underground metal mine in alpine region.This paper proposes a novel evaluation method called the cloud model-clustering analysis(CMCA).Cloud model(CM)is utilized to process collected data of ventilation system,and they are converted into cloud descriptors by CM.Cloud similarity(CS)based Euclidean distance(ED)is proposed to make clustering analysis of assessed samples.Then the classification of assessed samples will be identified by clustering analysis results.A case study is developed based on CMCA.Evaluation results show that ventilation effectiveness can be well classified.Moreover,CM is used alone to make comparison of evaluation results obtained by CMCA.Then the availability and validity of CMCA is verified.Meanwhile,difference of CS based ED and classical ED is analyzed.Two new clustering analysis methods are introduced to make comparison with CMCA.Then the ability of proposed CMCA to meet evaluation requirements of ventilation system is verified.
基金Under the auspices of National Natural Science Foundation of China(No.41171157)
文摘Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA), this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu Ba- sin, which is situated in the easternmost end of the Tianshan Mountains, Xinjiang Uygur Autonomous Region, China. For the zonal vegetation, community diversity of mountain vegetation is higher than that of the desert vegetation due to environmental factors. The CCA ordination diagram revealed that the composition and distribution of vegetation types are mainly determined by altitude, soil pH and soil salt content. With increasing elevation, the soil pH and total salt content decrease but the contents of soil organic matter, soil water, total nitrogen and total phosphorus increase gradu- ally. In the CCA ordination diagrams, the sample plots and main species can be divided into five types according to their adaptations to the environmental factors. Type Ⅰ is composed of desert vegetation distributed on the low moun- tains, hills, plains and deserts below an elevation of 1900 m; type Ⅱ is distributed in the mountain and desert ecotone with an elevation of 1900-2300 m, and includes steppe desert, desert steppe and wetland meadow; type Ⅲ is very sim- ply composed of only salinized meadow; type Ⅳ is distributed above an elevation of 2300 m, containing mountain steppe, meadow steppe, subalpine meadow and alpine meadow; type Ⅴ only contains salinized meadow. The results show that with increasing elevation, species combination changes from the xerophytic shrubs, semi-shrubs and herbs distributed in the low altitude zone with arid climate to the cold-tolerant perennial herbs growing in the high altitudinal zone with cold climate.