In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR) by 2021. This law was passed after a multiyear study by national experts on what...In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR) by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current status is that high temperature reactors have been relegated to completing research programs on advanced fuels, graphite and materials with no plans to build a demonstration plant as required by the US Con- gress in 2005. There are many reasons behind this diminution of HTGR development, including but not limited to insufficient government funding requirements for research, unrealistically high temperature requirements for the reactor, the delay in the need for a "hydrogen" economy, competition from light water small modular light water reactors, little utility interest in new technologies, very low natural gas prices in the US, and a challenging licensing process in the US for non-water reactors.展开更多
The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficien...The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) at a linear rate below850 °C, with activation energy of 137.18 k J/mol, and the reaction rate constant can be expressed as k=206901exp(-16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen,stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and Sb O2, while Sb2O3 can be volatilized efficiently at high temperature.展开更多
文摘In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR) by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current status is that high temperature reactors have been relegated to completing research programs on advanced fuels, graphite and materials with no plans to build a demonstration plant as required by the US Con- gress in 2005. There are many reasons behind this diminution of HTGR development, including but not limited to insufficient government funding requirements for research, unrealistically high temperature requirements for the reactor, the delay in the need for a "hydrogen" economy, competition from light water small modular light water reactors, little utility interest in new technologies, very low natural gas prices in the US, and a challenging licensing process in the US for non-water reactors.
基金Project(51204210) supported by the National Natural Science Foundation of ChinaProject(2011AA061001) supported by the National High Technology Research and Development Program of ChinaProject(2012BAC12B04) supported by the National Science&Technology Pillar Program during Twelfth Five-Year Plan of China
文摘The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) at a linear rate below850 °C, with activation energy of 137.18 k J/mol, and the reaction rate constant can be expressed as k=206901exp(-16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen,stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and Sb O2, while Sb2O3 can be volatilized efficiently at high temperature.