期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
大负载高温变率高低温试验系统 被引量:1
1
作者 马平昌 高飞 +2 位作者 刘洁 刘玥 李红 《装备环境工程》 CAS 2018年第7期20-24,共5页
目的研制一种闭合循环单回路方式的大负载高温变率高低温试验系统,并介绍其设计思路和关键技术,其有效负载高达1.0 t(铝),温变率最高可达5℃/min以满足产品的实测需求。方法针对大负载高温变率的要求,对加热制冷的方式以及功率进行设计... 目的研制一种闭合循环单回路方式的大负载高温变率高低温试验系统,并介绍其设计思路和关键技术,其有效负载高达1.0 t(铝),温变率最高可达5℃/min以满足产品的实测需求。方法针对大负载高温变率的要求,对加热制冷的方式以及功率进行设计;针对试验系统试验舱大空间、大负载等特点所造成的空间温度梯度大,波动剧烈的难点,对各个系统进行协调设计,特别提出低温系统的引射雾化设计以及温度积分分离的控制策略等创新点。结果高低温试验系统工作区的温度在升温阶段实现了较好的温度变化跟随性,在稳定阶段具有较好的空间均匀性和波动性,工作区各点温度均匀性≤2℃,温度波动度性≤±0.5℃。结论采用闭合循环单回路方式,并通过低温系统的引射雾化设计以及温度积分分离的控制策略,可以实现大负载高温变率高低温试验系统的空间均匀性和波动性以及温变跟随性的要求。 展开更多
关键词 高低温试验系统 大负载 高温变率 大空间 引射雾化 积分分离控制策略
下载PDF
Dynamic behavior and fracture mode of TiAl intermetallics with different microstructures at elevated temperatures 被引量:2
2
作者 昝祥 贺跃辉 +1 位作者 汪洋 夏源明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期45-51,共7页
Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from ... Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from room temperature to 840 ℃ and a strain rate range of 0.001-1 350 s-1.The results indicate that the alloys are both temperature and strain rate dependent and they have a similar dependence.The dynamic strength is higher than the quasi-static strength but almost insensitive to high strain rate range of 320-1 350 s-1.The brittle-to-ductile transition temperature(BDTT) increases with increasing strain rates.NG TiAl yields obviously,while NL TiAl does not.Below BDTT,as the temperature increases,the fracture modes of the two alloys change from planar cleavage fracture to a mixture of transgranular and intergranular fractures,and finally to totally intergranular fracture. 展开更多
关键词 TiAl intermetallics high strain rate elevated temperature character tensile properties fracture mode
下载PDF
Strain rate-dependent high temperature compressive deformation characteristics of ultrafine-grained pure aluminum produced by ECAP
3
作者 颜莹 齐跃 +1 位作者 陈立佳 李小武 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期966-973,共8页
To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at dif... To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures. 展开更多
关键词 equal channel angular pressing(ECAP) pure Al strain rate high temperature compression DEFORMATION damage microstructure
下载PDF
Compressive behavior of high particle content B_4C/Al composite at elevated temperature 被引量:3
4
作者 刘斌 黄文貌 +2 位作者 王浩伟 汪明亮 李险峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2826-2832,共7页
The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strai... The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strain curves were obtained at the temperature ranging from 298 to 773 K and strain rate ranging from 1×10^(-3) to 5 s ^(-1). The results showed that the dynamic compressive strength decreased more slowly than the quasi-static compressive strength at elevated temperatures, which was attributed to the different failure modes of the composite under dynamic and quasi-static load. The strain rate sensitivity increased from 0.02 to 0.13 when the temperature increased from room temperature to 773 K, suggesting that the strain rate sensitivity of this type of composite is a function of temperature. 展开更多
关键词 B4C COMPOSITE compressive properties strain rate high temperature
下载PDF
Subtransus deformation mechanisms of TC11 titanium alloy with lamellar structure 被引量:2
5
作者 宋鸿武 张士宏 程明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2168-2173,共6页
Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. ... Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. According to the flow stress data obtained by compression tests, the deformation activations are calculated based on kinetics analysis of high temperature deformation, which are then used for deformation mechanism analysis combined with microstructure investigation. The results show that deformation mechanisms vary with deformation conditions: at low strain rate range, the deformation mechanism is mainly dislocation slip; at low temperature and high strain rate range, twinning is the main mechanism; at high temperature and high strain rate range, the deformation is mainly controlled by diffusion offl phase. 展开更多
关键词 TC11 titanium alloy lamellar structure deformation activation deformation mechanism
下载PDF
Inhomogeneous trends in the onset date of extreme hot days in China over the last five decades 被引量:1
6
作者 Yang Yang Zhaohui Lin +2 位作者 Lifeng Luo Yan Zhang Zhen Li 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第6期33-40,共8页
Using a homogenized daily maximum temperature(T_(max))dataset across China,this study characterized the spatiotemporal variation of the onset date of extreme hot days in a year(i.e.,FirstEHD)during 1960-2018.Inhomogen... Using a homogenized daily maximum temperature(T_(max))dataset across China,this study characterized the spatiotemporal variation of the onset date of extreme hot days in a year(i.e.,FirstEHD)during 1960-2018.Inhomogeneous trends of FirstEHD over China during 1960-2018 can be found,with the advanced trend of FirstEHD over most parts in China,while a number of stations in North-Central China(NC)show the delayed trend of FirstEHD.Moreover,there exist interdecadal changes of FirstEHD trend,with a remarkable difference in the trend magnitude before and after the 1990s over South China(SC),and the sign of trend can even reverse from negative to positive after the 1990s in Xinjiang(XJ)and Yangtze River Basin(YR),and from positive to negative in NC.The overall trends of FirstEHD over NC,YR,and XJ during 1960-2018 are dominated by the trends before the 1990s,while they are dominated by the sharp advance after the 1990s over SC.It is further found that the trend of FirstEHD can generally be explained by the long-term trend in T_(max) over most parts of China,but the contribution from T_(max) variabilities is also non-negligible and can even account for more than 75% of the overall trend over NC.The possible factors responsible for the decadal changes in FirstEHD trends are also discussed. 展开更多
关键词 Extreme hot days Onset date Trend Decadal change Variability of maximum temperature
下载PDF
Effect of strain rate on hot deformation characteristics of GH690 superalloy 被引量:6
7
作者 Zhao-xia SHI Xiao-fengYAN +1 位作者 Chun-hua DUAN Ming-han ZHAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期538-550,共13页
In order to clarify the effect of strain rate on hot deformation characteristics of GH690superalloy,the hot deformationbehavior of this superalloy was investigated by isothermal compression in the temperature range of... In order to clarify the effect of strain rate on hot deformation characteristics of GH690superalloy,the hot deformationbehavior of this superalloy was investigated by isothermal compression in the temperature range of1000?1200°C and strain raterange of0.001?10s?1on a Gleeble?3800thermo-mechanical simulator.The results reveal that the flow stress is sensitive to the strainrate,and the dynamic recrystallization(DRX)is the principal softening mechanism.The strain rate of0.1s?1is considered to be thecritical point during the hot deformation at1000°C.The DRX process is closely related to the strain rate due to the adiabatictemperature rise.The strain rate has an important influence on DDRX and CDRX during hot deformation.The nucleation of DRXcan be activated by twin boundaries,and there is a lower fraction ofΣ3n(n=1,2,3)boundaries at the intermediate strain rate of0.1s?1. 展开更多
关键词 GH690 superalloy hot deformation strain rate dynamic recrystallization (DRX)
下载PDF
Hot deformation behavior and constitutive relationship of Q420qE steel 被引量:2
8
作者 禹宝军 关小军 +3 位作者 王丽君 赵健 刘千千 曹宇 《Journal of Central South University》 SCIE EI CAS 2011年第1期36-41,共6页
Isothermal compression tests at temperatures from 1 273 to l 423 K and strain rates from 0.1 to 10 s-q were carried out to investigate the flow behaviors of Q420qE steel. Stress-strain data collected from the tests we... Isothermal compression tests at temperatures from 1 273 to l 423 K and strain rates from 0.1 to 10 s-q were carried out to investigate the flow behaviors of Q420qE steel. Stress-strain data collected from the tests were employed to establish the constitutive equation, in which the influence of strain was incorporated by considering the effect of strain on material constants Q, n, a, and lnA. The results show that the flow stress curves are dependent on the strain, strain rate and deformation temperature. They display typical dynamic recrystallization behavior and consist of three stages, i.e., hardening stage, softening stage and steady stage. The flow stress decreases with increasing the deformation temperature and decreasing the strain rate. In addition, the flow stress data predicted by the proposed constitutive model agree well with the corresponding experimental results, and the correlation coefficient and the average absolute relative error between them are 0.990 3 and 3.686%, respectively. 展开更多
关键词 Q420qE bridge steel hot compression flow stress strain dependent constitutive equation
下载PDF
Effects of strain rates on mechanical properties of limestone under high temperature 被引量:10
9
作者 Tang Furong Mao Xianbiao +2 位作者 Zhang Lianying Yin Huiguang Li Yan 《Mining Science and Technology》 EI CAS 2011年第6期857-861,共5页
The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- cont... The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- controlled testing system considering the loading rate as a variable. The mechanical properties of limestone such as the stress-strain curve, variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 10à5 to 1.1 10à1 sà1. (1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 10à5 to 1.1 10à4 sà1 at 700 °C as well as a downward trend was shown from 1.1 10à4 to 1.1 10à1 sà1 with the rise of the strain rate. (2) The peak strain increased from 1.1 10à5 to 1.1 10à4 sà1, however, there was no obvious changes shown for the peak strain of limestone from 1.1 10à4 to 1.1 10à1 sà1. These results can provide valuable references for the rock blasting effect and design of mine. 展开更多
关键词 Strain rates High temperature Mechanical properties Limestone
下载PDF
Characterization of hot deformation behavior of Al-Zn-Mg-Mn-Zr alloy during compression at elevated temperature 被引量:4
10
作者 YAN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期515-520,共6页
The hot deformation behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17 Zr alloy and its microstructural evolution were investigated by isothermal compression test in the deformation temperature range between 623 and 773 K and th... The hot deformation behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17 Zr alloy and its microstructural evolution were investigated by isothermal compression test in the deformation temperature range between 623 and 773 K and the strain rate range between 0.01 and 20 s^(-1).The results show that the flow stress decreased with decreasing strain rate and increasing deformation temperature.At low deformation temperature(≤673 K) and high strain rate(≥1 s^(-1)),the main flow softening was caused by dynamic recovery;conversely,at higher deformation temperature and lower strain rate,the main flow softening was caused by dynamic recrystallization.Moreover,the slipping mechanism transformed from dislocation glide to grain boundary sliding with increasing the deformation temperature and decreasing the strain rate.According to TEM observation,numerous Al_3Zr particles precipitated in matrix,which could effectively inhibit the dynamic recrystallization of the alloy.Based on the processing map,the optimum processing conditions for experimental alloy were in deformation temperature range from 730 K to 773 K and strain rate range from 0.033 s^(-1) to 0.18 s^(-1) with the maximum efficiency of 39%. 展开更多
关键词 aluminum alloy hot deformation TEM dynamic recrystallization processing map
下载PDF
Model of critical strain for dynamic recrystallization in 10%TiC/Cu-Al_2O_3 composite 被引量:4
11
作者 杨志强 刘勇 +1 位作者 田保红 张毅 《Journal of Central South University》 SCIE EI CAS 2014年第11期4059-4065,共7页
Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the tempe... Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the temperatures from 450 °C to 850 °C with the strain rates from 0.001 s-1 to 1 s-1. The results show that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow true stress-strain curves of the composite, and the peak stress increases with the decreasing deformation temperature or the increasing strain rate. The thermal deformation activation energy was calculated as 170.732 k J/mol and the constitutive equation was established. The inflection point in the lnθ-ε curve appears and the minimum value of-(lnθ)/ε-ε curve is presented when the critical state is attained for this composite. The critical strain increases with the increasing strain rate or the decreasing deformation temperature. There is linear relationship between critical strain and peak strain, i.e., εc=0.572εp. The predicting model of critical strain is described by the function of εc=1.062×10-2Z0.0826. 展开更多
关键词 10%Ti C/Cu-Al2O3 composite hot deformation constitutive equation dynamic recrystallization critical condition
下载PDF
An interdecadal decrease in extreme heat days in August over Northeast China around the early 1990s
12
作者 Wenjun Liu Ruidan Chen Zhiping Wen 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第1期1-6,共6页
Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features... Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features a unique interdecadal decrease in EHDs around the early 1990s.Plausible reasons for the interdecadal decrease in EHDs in August are further investigated.Results show that the interdecadal decrease in EHDs in August is due to the deceased variability of daily maximum temperature(Tmax).Overall,the variation of the Tmax over NEC in August is modulated by the Eurasian teleconnection pattern,Silk Road pattern,and East AsiaPacific pattern.However,the influence of the Silk Road pattern dramatically weakens after the early 1990s because the meridional wind variability along the westerly jet significantly decreases.The weakened influence of the Silk Road pattern contributes to the decreased Tmax variability over NEC.Meanwhile,the convection over the western North Pacific,which accompanies the East Asia-Pacific pattern,presents a significant decrease in variance after the early 1990s,further decreasing the Tmax variability over NEC. 展开更多
关键词 Northeast China Extreme heat INTERDECADAL Variability
下载PDF
Entropy Analyses of Droplet Combustion in Convective Environment with Small Reynolds Number 被引量:1
13
作者 ZHANG Xiaobin ZHANGWei ZHANG Xuejun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第6期654-662,共9页
This paper analyzes the entropy generation rate of simple pure droplet combustion in a tempera-ture-elevated air convective environment based on the solutions of flow, and heat and mass transfer between the two phases... This paper analyzes the entropy generation rate of simple pure droplet combustion in a tempera-ture-elevated air convective environment based on the solutions of flow, and heat and mass transfer between the two phases. The flow-field calculations are carried out by solving the respective conservation equations for each phase, accounting for the droplet deformation with the axisymmetric model. The effects of the temperature, velocity and oxygen fraction of the free stream air on the total entropy generation rate in the process of the droplet combustion are investigated. Special attention is given to analyze the quantitative effects of droplet deformation. The results re-veal that the entropy generation rate due to chemical reaction occupies a large fraction of the total entropy generated, as a result of the large areas covered by the flame. Although, the magnitude of the entropy generation rate per volume due to heat transfer and combined mass and heat transfer has a magnitude of one order greater than that due to chemical reaction, they cover a very limited area, leading to a small fraction of the total entropy generated. The en-tropy generation rate due to mass transfer is negligible. High temperature and high velocity of the free stream are advantageous to increase the exergy efficiency in the range of small Reynolds number (<1) from the viewpoint of the second-law analysis over the droplet lifetime. The effect of droplet deformation on the total entropy generation is the modest. 展开更多
关键词 entropy generation exergy analysis droplet combustion numerical simulation
下载PDF
Hot-compression behavior of Al alloy 5182
14
作者 唐建国 黄星星 张新明 《Journal of Central South University》 SCIE EI CAS 2012年第8期2073-2080,共8页
Hot-compression of aluminum alloy 5182 was carried out on a Gleeble- 1500 thermo-simulator at deformation temperature ranging from 350 ℃ to 500 ℃ and at strain rate from 0.01 s^-1 to 10 s^-1 with strain range from 0... Hot-compression of aluminum alloy 5182 was carried out on a Gleeble- 1500 thermo-simulator at deformation temperature ranging from 350 ℃ to 500 ℃ and at strain rate from 0.01 s^-1 to 10 s^-1 with strain range from 0.7 to 1.9. The microstructures and macro-textures evolution under different conditions were investigated by polarized optical microscopy and X-ray diffraction analysis, respectively. The basic trend is that the hot-compression stress increases with the decrease of temperature and increase of strain rate, which is revealed and elucidated in terms of Zener-Hollomon parameter in the hyperbolic sine equation with the hot-deformation activation energy of 143.5 kJ/mol. An empirical constitutive equation is proposed to predict the hot-deformation behavior under different conditions. As deformation temperature increases up to 400 ℃, at strain rate over 1 s^-1, dynamic recrystallization (DRX) occurs. Cube orientation { 100} (001) is detected in the recrystallized sample after hot-compression. 展开更多
关键词 aluminum alloy 5182 hot-compression TEXTURE MICROSTRUCTURE
下载PDF
Experiment on Mode Ⅰ/Ⅱ Mixed Interfacial Fracture Characterization of Foam Core Sandwich Materials at Elevated Temperatures
15
作者 WANG Lu YIN Chunxiang SI Qinan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第1期83-87,共5页
Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of ... Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of foamcored sandwich materials is weakened at elevated temperatures. In practice,the effect of high temperature cannot be ignored,because the composites and foams are sensitive to the change of temperature in the environment. In this study,a series of single-leg bending beams were tested at different temperatures to evaluate the influences of high temperatures on Mode Ⅰ/Ⅱ mixed interfacial fracture of foam core sandwich materials. The temperature was from29 ℃ to 90 ℃,covered the glass transition temperature of composites and foam core,respectively. The Mode Ⅰ/Ⅱ mixed interfacial crack prorogation and its corresponding interfacial strain energy release rate were summarized. 展开更多
关键词 foam core sandwich materials Mode I/II mixed interfacial fracture elevated temperature single-leg bending strain energy release rate
下载PDF
The Characteristics of Turbulence Structure and Transfer over the Middle Area of the Tibetan Plateau
16
作者 LI Fu-Yu LI Xiao-Lan ZHANG Hong-Sheng 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第2期67-73,共7页
In this paper, turbulent data obtained from the Damxung site during the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998 are used to study the characteristics of the turbulent spectra, turbulence transport... In this paper, turbulent data obtained from the Damxung site during the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998 are used to study the characteristics of the turbulent spectra, turbulence transport, and the dissipation rates of turbulent kinetic energy, temperature variance, and humidity variance in the middle area of the Tibetan Plateau. The turbulent spectra of wind velocity, potential temperature, and humidity satisfy the-2/3 power law in the high frequency range. Horizontal transportation of heat and water vapor is negligible compared with vertical transportation under strong unstable conditions, and as the stability parameter z/L increases (where z is the observational height, and L is the Monin Obukhov length), horizontal transportation becomes dominant under near-neutral, neutral, and stable conditions. The non-dimensional temperature and humidity variances are 20% less than the temperature and humidity gradient variances. These deficits appear to increase as the absolute stability parameter increases. Moreover, the effects of turbulence transportation and pressure variance exist throughout the entire stability region. 展开更多
关键词 turbulence structure turbulence transfer dissipation rate observational method Tibetan Plateau
下载PDF
A fluid-guided printing strategy for patterning high refractive index photonic microarrays
17
作者 Meng Su Yali Sun +7 位作者 Bingda Chen Zeying Zhang Xu Yang Sisi Chen Qi Pan Dmitry Zuev Pavel Belov Yanlin Song 《Science Bulletin》 SCIE EI CSCD 2021年第3期250-256,M0004,共8页
High refractive index(HRI,n>1.8)photonic structures offer strong light confinement and refractive efficiencies,cover the entire visible spectrum and can be tuned by designing geometric arrayed features.However,its ... High refractive index(HRI,n>1.8)photonic structures offer strong light confinement and refractive efficiencies,cover the entire visible spectrum and can be tuned by designing geometric arrayed features.However,its practical applications are still hindered by the applicability and material limitation of lithography-based micro/nano fabrication approaches.Herein,we demonstrate a fluid-guided printing process for preparing HRI selenium microarrays.The microstructured flexible template is replicated from the diced silicon wafer without any lithography-based methods.When heated above the glass transition temperature,the flow characteristics of selenium endows the structure downsizing and orientation patterning between the target substrate and the template.Near 10 times narrowing selenium microarrays(1.9μm width)are patterned from the non-lithography template(18μm width).HRI selenium microarrays offer high refractive efficiencies and strong optical confinement abilities,which achieve angledependent structurally coloration and polarization.Meanwhile,the color difference can be recognized under the one degree distinction of the angle between incident and refracted light.This printing platform will facilitate HRI optical metasurfaces in a variety of applications,ranging from photonic sensor,polarization modulation to light manipulation. 展开更多
关键词 PRINTING High refractive index MICROARRAY PHOTONIC MINIATURE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部