To control the superplastic flow and fracture and examine the variation in deformation energy,the stress and grain size of Mg-7.28Li-2.19Al-0.091Y alloy were obtained using tensile testing and microstructure quantific...To control the superplastic flow and fracture and examine the variation in deformation energy,the stress and grain size of Mg-7.28Li-2.19Al-0.091Y alloy were obtained using tensile testing and microstructure quantification,and new high temperature deformation energy models were established.Results show that the grain interior deformation energy increases with increasing the strain rate and decreases with increasing the temperature.The variation in the grain boundary deformation energy is opposite to that in the grain interior deformation energy.At a given temperature,critical cavity nucleation energy decreases with increasing strain rate and cavity nucleation becomes easy,whereas at a given strain rate,critical cavity nucleation energy increases with increasing temperature and cavity nucleation becomes difficult.The newly established models of the critical cavity nucleation radius and energy provide a way for predicting the initiation of microcrack and improving the service life of the forming parts.展开更多
High temperature plastic deformation behavior of non-orientated electrical steel was investigated by Gleeble 1500 thermo-mechanical simulator at strain rate of 0.01-10 s^-1 and high temperature of 500-1 200 ℃. The st...High temperature plastic deformation behavior of non-orientated electrical steel was investigated by Gleeble 1500 thermo-mechanical simulator at strain rate of 0.01-10 s^-1 and high temperature of 500-1 200 ℃. The stress level factor (a), stress exponent (n), structural factor (A) and activation energy (Q) of high temperature plastic deformation process of non-orientated electrical steel in different temperature ranges were calculated by the Arrhenius model. The results show that, with dynamic elevation of deformation temperature, phase transformation from α-Fe to γ-Fe takes place simultaneously during plastic deformation, dynamic recovery and dynamic recrystallization process, leading to an irregular change of the steady flow stress. For high temperature plastic deformation between 500 and 800 ℃, the calculated values of a, n, A, and Q are 0.039 0 MPa 1, 7.93, 1.9× 10^18 s^-1, and 334.8 kJ/mol, respectively, and for high temperature plastic deformation between 1 050 and 1 200 ℃, the calculated values of a, n, A, and Q are 0.125 8 MPa1, 5.29, 1.0 × 10^28 s^-1, and 769.9 kJ/mol, respectively.展开更多
Seldom could metals and alloys maintain excellent properties in cryogenic condition, such as the ductility, owing to the restrained dislocation motion.However, a face-centered-cubic(FCC) CoCrFeNi highentropy alloy(HEA...Seldom could metals and alloys maintain excellent properties in cryogenic condition, such as the ductility, owing to the restrained dislocation motion.However, a face-centered-cubic(FCC) CoCrFeNi highentropy alloy(HEA) with great ductility is investigated under the cryogenic environment. The tensile strength of this alloy can reach a maximum at 1,251±10 MPa, and the strain to failure can stay at as large as 62% at the liquid helium temperature. We ascribe the high strength and ductility to the low stacking fault energy at extremely low temperatures,which facilitates the activation of deformation twinning.Moreover, the FCC→HCP(hexagonal close-packed) transition and serration lead to the sudden decline of ductility below 77 K. The dynamical modeling and analysis of serrations at 4.2 and 20 K verify the unstable state due to the FCC→HCP transition. The deformation twinning together with phase transformation at liquid helium temperature produces an adequate strain-hardening rate that sustains the stable plastic flow at high stresses, resulting in the serration feature.展开更多
A modified theoretical model is proposed to predict the grain boundary segregation of impurity atoms during high temperature plastic deformation. The model is based on the supersaturated vacancy-impurity complex creat...A modified theoretical model is proposed to predict the grain boundary segregation of impurity atoms during high temperature plastic deformation. The model is based on the supersaturated vacancy-impurity complex created by plastic deformation and involves quasi-thermodynamics and kinetics. Model predictions are made for phosphorus grain boundary segregation during plastic deformation in ferrite steel. The results reveal that phosphorus segregates at grain boundaries during plastic deformation. At a given temperature, under a certain strain rate the segregation increases with increasing deformation amount until reaching a steady value, and at the same deformation amount it increases with increasing strain rate. The predicted results are compared with the available experimental values, indicating that there is a reasonable agreement between the theoretical predictions and the experimental observations.展开更多
基金Project(51334006)supported by the National Natural Science Foundation of China
文摘To control the superplastic flow and fracture and examine the variation in deformation energy,the stress and grain size of Mg-7.28Li-2.19Al-0.091Y alloy were obtained using tensile testing and microstructure quantification,and new high temperature deformation energy models were established.Results show that the grain interior deformation energy increases with increasing the strain rate and decreases with increasing the temperature.The variation in the grain boundary deformation energy is opposite to that in the grain interior deformation energy.At a given temperature,critical cavity nucleation energy decreases with increasing strain rate and cavity nucleation becomes easy,whereas at a given strain rate,critical cavity nucleation energy increases with increasing temperature and cavity nucleation becomes difficult.The newly established models of the critical cavity nucleation radius and energy provide a way for predicting the initiation of microcrack and improving the service life of the forming parts.
基金Project(2005038560) supported by the Postdoctoral Foundation of ChinaProject(05GK1002-2) supported by Key Program of Hunan Province
文摘High temperature plastic deformation behavior of non-orientated electrical steel was investigated by Gleeble 1500 thermo-mechanical simulator at strain rate of 0.01-10 s^-1 and high temperature of 500-1 200 ℃. The stress level factor (a), stress exponent (n), structural factor (A) and activation energy (Q) of high temperature plastic deformation process of non-orientated electrical steel in different temperature ranges were calculated by the Arrhenius model. The results show that, with dynamic elevation of deformation temperature, phase transformation from α-Fe to γ-Fe takes place simultaneously during plastic deformation, dynamic recovery and dynamic recrystallization process, leading to an irregular change of the steady flow stress. For high temperature plastic deformation between 500 and 800 ℃, the calculated values of a, n, A, and Q are 0.039 0 MPa 1, 7.93, 1.9× 10^18 s^-1, and 334.8 kJ/mol, respectively, and for high temperature plastic deformation between 1 050 and 1 200 ℃, the calculated values of a, n, A, and Q are 0.125 8 MPa1, 5.29, 1.0 × 10^28 s^-1, and 769.9 kJ/mol, respectively.
基金supported in part by the Nationa Natural Science Foundation of China (51471025, 51671020, 51471024 and 11771407)the Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0011194)+1 种基金the support from the US Army Research Office project (W911NF-13-1-0438)the support from the National Science Foundation (DMR-1611180 and 1809640)
文摘Seldom could metals and alloys maintain excellent properties in cryogenic condition, such as the ductility, owing to the restrained dislocation motion.However, a face-centered-cubic(FCC) CoCrFeNi highentropy alloy(HEA) with great ductility is investigated under the cryogenic environment. The tensile strength of this alloy can reach a maximum at 1,251±10 MPa, and the strain to failure can stay at as large as 62% at the liquid helium temperature. We ascribe the high strength and ductility to the low stacking fault energy at extremely low temperatures,which facilitates the activation of deformation twinning.Moreover, the FCC→HCP(hexagonal close-packed) transition and serration lead to the sudden decline of ductility below 77 K. The dynamical modeling and analysis of serrations at 4.2 and 20 K verify the unstable state due to the FCC→HCP transition. The deformation twinning together with phase transformation at liquid helium temperature produces an adequate strain-hardening rate that sustains the stable plastic flow at high stresses, resulting in the serration feature.
基金supported by the National Natural Science Foundation of China (Grant No. 50671033)the Department of Science and Technology of Shenzhen (Grant No. SY200806260037A)
文摘A modified theoretical model is proposed to predict the grain boundary segregation of impurity atoms during high temperature plastic deformation. The model is based on the supersaturated vacancy-impurity complex created by plastic deformation and involves quasi-thermodynamics and kinetics. Model predictions are made for phosphorus grain boundary segregation during plastic deformation in ferrite steel. The results reveal that phosphorus segregates at grain boundaries during plastic deformation. At a given temperature, under a certain strain rate the segregation increases with increasing deformation amount until reaching a steady value, and at the same deformation amount it increases with increasing strain rate. The predicted results are compared with the available experimental values, indicating that there is a reasonable agreement between the theoretical predictions and the experimental observations.