Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and ...Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively.展开更多
Oxidation behaviors of TP304H steel with electrophoresis deposited CeO2 coating in water vapor were studied at 610℃~770℃ for 65 h. The results showed that CeO2 coating reduced effectively the oxidation rate of TP30...Oxidation behaviors of TP304H steel with electrophoresis deposited CeO2 coating in water vapor were studied at 610℃~770℃ for 65 h. The results showed that CeO2 coating reduced effectively the oxidation rate of TP304H. Analysis with SEM and EDS showed the structure of oxide scale turned from multi-layer to mono-layer and oxide scale with high Cr content formed on the surface of CeO2 coating while inner oxidation disappeared. Based on test results and CeO2characters that Ce ion can vary between Ce4+ and Ce3+ under oxygen-rich and oxygen-poor environment, it is concluded that CeO2 coating acts as a barrier to prevent oxygen inner diffusion and the partial oxygen pressure of CeO2 coating-substrate interface is limited. Cr first diffuses outward across CeO2 coating and forms oxide scale on the surface, which delays formation of Fe oxide.展开更多
基金National Key R&D Program of China(2017YFB0703201)National Natural Science Foundation of China(51772302)+1 种基金National Natural Science Foundation of China-China National Nuclear Corporation Joint Fund(U2067217)Primary Research and Development Project of Suzhou(SGC201840)。
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.21303037), China Postdoctoral Science Foundation (No.2013M53150), and tile Fundamental Research Funds for the Central Univcrsitics (No.2012HGZY0001).
文摘Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively.
文摘Oxidation behaviors of TP304H steel with electrophoresis deposited CeO2 coating in water vapor were studied at 610℃~770℃ for 65 h. The results showed that CeO2 coating reduced effectively the oxidation rate of TP304H. Analysis with SEM and EDS showed the structure of oxide scale turned from multi-layer to mono-layer and oxide scale with high Cr content formed on the surface of CeO2 coating while inner oxidation disappeared. Based on test results and CeO2characters that Ce ion can vary between Ce4+ and Ce3+ under oxygen-rich and oxygen-poor environment, it is concluded that CeO2 coating acts as a barrier to prevent oxygen inner diffusion and the partial oxygen pressure of CeO2 coating-substrate interface is limited. Cr first diffuses outward across CeO2 coating and forms oxide scale on the surface, which delays formation of Fe oxide.