Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condit...Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condition,the oxidation rate of Alloy 617 was not significantly affected in helium and hot steam environments,while Haynes 230 showed lower oxidation rate in helium environment.On the other hand,the oxide morphology and structure of Alloy 617 were strongly affected by the environments,but those of Haynes 230 were less dependent on the environments.For Haynes 230,a Cr2O3 inner layer and a protective MnCr2O4 outer layer were formed in all environments,which contributed to the better oxidation resistance.As the mechanical properties,such as creep and tensile properties,were significantly affected by the oxidation behaviors,surface treatment methods to enhance oxidation resistance of these alloys should be developed.展开更多
Ni/YSZ fuel electrodes can only operate under strongly reducing conditions for steam elec- trolysis in an oxide-ion-conducting solid oxide electrolyzer (SOE). In atmosphere with a low content of H2 or without H2, ca...Ni/YSZ fuel electrodes can only operate under strongly reducing conditions for steam elec- trolysis in an oxide-ion-conducting solid oxide electrolyzer (SOE). In atmosphere with a low content of H2 or without H2, cathodes based on redox-reversible Nb2TiO7 provide a promising alternative. The reversible changes between oxidized Nb2TiO7 and reduced Nbl.33Tio.6704 samples are systematically investigated after redox-cycling tests. The conductivities of Nb2TiO7 and reduced Nb1.33Tio.6704 are studied as a function of temperature and oxygen partial pressure and correlated with the electrochemical properties of the composite electrodes in a symmetric cell and SOE at 830 ℃. Steam electrolysis is then performed using an oxide-ion-conducting SOE based on a Nb1.33Ti0.6704 composite fuel electrode at 830 ℃. The current-voltage and impedance spectroscopy tests demonstrate that the reduction and activation of the fuel electrode is the main process at low voltage; however, the steam electrolysis dominates the entire process at high voltages. The Faradic efficiencies of steam electrolysis reach 98.9% when 3%H2O/Ar/4%H2 is introduced to the fuel electrode and 89% for that with introduction of 3%H2O/Ar.展开更多
This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereper...This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.展开更多
Thermal efficiency has improved by using high-temperature vapor produced by spraying water vapor along with flame from a burner. This study aims to apply high-temperature steam heating mechanism in a high-efficient in...Thermal efficiency has improved by using high-temperature vapor produced by spraying water vapor along with flame from a burner. This study aims to apply high-temperature steam heating mechanism in a high-efficient industrial furnace and household gas range. Past studies in this laboratory show that the heat transfer is promoted due to the appropriate amount of water content in each convection, radiation heat transfer. Then, water vapor-added industrial metal melting furnace has been researched. However, the existing furnace was intended to evaluate only the effect of water vapor except measuring surrounding environment, for example temperature and humidity. In this study, the effect of surrounding environment to the furnace is examined, and possibility of heat transfer enhancement is estimated. As a result, surrounding experimental condition has little effect on the change of heating ability, while this experimental furnace shows gradual degradation of heating ability in every experimental trial. Then optimum amount of water supply to the apparatus was discussed. Too much water injection leads to more consumption of heat as latent heat of water in phase change, and exceeds the effect of water vapor in heat transfer. There is a possibility of suitable total water supply, despite that there is no significant change in gas usage in water injection case compared with no water injection.展开更多
基金supported by the MEST/NRF (Nuclear R&D Program,2005-2004718 and 2009 0083392) of Korea
文摘Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condition,the oxidation rate of Alloy 617 was not significantly affected in helium and hot steam environments,while Haynes 230 showed lower oxidation rate in helium environment.On the other hand,the oxide morphology and structure of Alloy 617 were strongly affected by the environments,but those of Haynes 230 were less dependent on the environments.For Haynes 230,a Cr2O3 inner layer and a protective MnCr2O4 outer layer were formed in all environments,which contributed to the better oxidation resistance.As the mechanical properties,such as creep and tensile properties,were significantly affected by the oxidation behaviors,surface treatment methods to enhance oxidation resistance of these alloys should be developed.
文摘Ni/YSZ fuel electrodes can only operate under strongly reducing conditions for steam elec- trolysis in an oxide-ion-conducting solid oxide electrolyzer (SOE). In atmosphere with a low content of H2 or without H2, cathodes based on redox-reversible Nb2TiO7 provide a promising alternative. The reversible changes between oxidized Nb2TiO7 and reduced Nbl.33Tio.6704 samples are systematically investigated after redox-cycling tests. The conductivities of Nb2TiO7 and reduced Nb1.33Tio.6704 are studied as a function of temperature and oxygen partial pressure and correlated with the electrochemical properties of the composite electrodes in a symmetric cell and SOE at 830 ℃. Steam electrolysis is then performed using an oxide-ion-conducting SOE based on a Nb1.33Ti0.6704 composite fuel electrode at 830 ℃. The current-voltage and impedance spectroscopy tests demonstrate that the reduction and activation of the fuel electrode is the main process at low voltage; however, the steam electrolysis dominates the entire process at high voltages. The Faradic efficiencies of steam electrolysis reach 98.9% when 3%H2O/Ar/4%H2 is introduced to the fuel electrode and 89% for that with introduction of 3%H2O/Ar.
文摘This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.
文摘Thermal efficiency has improved by using high-temperature vapor produced by spraying water vapor along with flame from a burner. This study aims to apply high-temperature steam heating mechanism in a high-efficient industrial furnace and household gas range. Past studies in this laboratory show that the heat transfer is promoted due to the appropriate amount of water content in each convection, radiation heat transfer. Then, water vapor-added industrial metal melting furnace has been researched. However, the existing furnace was intended to evaluate only the effect of water vapor except measuring surrounding environment, for example temperature and humidity. In this study, the effect of surrounding environment to the furnace is examined, and possibility of heat transfer enhancement is estimated. As a result, surrounding experimental condition has little effect on the change of heating ability, while this experimental furnace shows gradual degradation of heating ability in every experimental trial. Then optimum amount of water supply to the apparatus was discussed. Too much water injection leads to more consumption of heat as latent heat of water in phase change, and exceeds the effect of water vapor in heat transfer. There is a possibility of suitable total water supply, despite that there is no significant change in gas usage in water injection case compared with no water injection.