The long-term trend of diurnal temperature range(DTR)over Nigeria was examined using daily station-based datasets for the period 1971–2013.The results show that the regionally averaged DTR has decreased significantly...The long-term trend of diurnal temperature range(DTR)over Nigeria was examined using daily station-based datasets for the period 1971–2013.The results show that the regionally averaged DTR has decreased significantly(-0.34°C per decade)over the Nigerian Sahel(north of 10°N),but there has been a slight increasing trend(0.01°C per decade)over the Nigerian Guinea Coast.The annual decreasing trend of DTR in the Nigerian Sahel is mainly attributable to the significant increasing trend in daily minimum temperature(Tmin,0.51°C per decade),which far outstrips the rate of increase in the daily maximum(Tmax,0.17°C per decade).In contrast,the comparable trends in Tmin(0.19°C per decade)and Tmax(0.20°C per decade)may explain the non-significant trend of the DTR averaged over the Guinea Coast region.It is observed that the DTR has decreased more in boreal summer(June–July–August)than in boreal winter(December–January–February)for the regions.Furthermore,it is found that the significant DTR declining trend over the Nigerian Sahel is closely associated with an increasing trend of annual and summer precipitation in the region,but the increasing DTR trend in the Nigerian Guinea Coast region can be attributed to the decreasing trend of cloud cover over the region.展开更多
in order to achieve a more efficient way to accurately detect the position of the fire source of spontaneous combustion underground mine, a simple fire source locating method, based on infrared scanning system which c...in order to achieve a more efficient way to accurately detect the position of the fire source of spontaneous combustion underground mine, a simple fire source locating method, based on infrared scanning system which can determine the point where the highest temperature on the surface of igniting ores occurs, was proposed. First, the differential equations that describe heat flow in ore body were presented and the relationship between the surface temperature distribution and the depth and intensity of inner fire source was established with a relatively simple heat transfer model. With the solution of equation, the expression of the relationship between the surface temperature distribution and the inner fire source was deduced and the mathematical-physical model of heat transfer process was set up. Then, with the model, visualization of fire source on the basis of MATLAB simulation platform was realized. The results show that: 1) within 10 m, when the detecting depth is less than 2 m, the temperature perturbation on ores surface can change rapidly, and then slowly; after 4 m, in contrast, it changes very little, and is even close to zero at 10 m; 2) When it is close to self-ignition duration and the detective depths are 2, 5 and 10 m, respectively, the maximum temperature differences are correspondingly 0.5, 0.04 and 0.005 ℃ in the scope of 1 m×1 m; under the same condition, the maximum temperature differences are 1.391, 0.136 and 0.018 ℃, respectively, in the scope of 2 m×2 m. Therefore, this system can be used to measure the temperature differences on the surface of ore body and determine the highest temperature point directly. Also, it is possible to determine the depth of fire source and its intensity by locating method of fire source indirectly.展开更多
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)[grant number XDA19030403]the National Natural Science Foundation of China [grant number 41575095]+2 种基金the CAS ‘Belt and Road Initiatives’ Program on International Cooperation [grant number 134111KYSB20160010]Victor Nnamdi DIKE acknowledges support from the CAS–TWAS(The World Academy of Sciences)President FellowshipHyacinth NNAMCHI is supported by the International Federation for Science(W/4849)
文摘The long-term trend of diurnal temperature range(DTR)over Nigeria was examined using daily station-based datasets for the period 1971–2013.The results show that the regionally averaged DTR has decreased significantly(-0.34°C per decade)over the Nigerian Sahel(north of 10°N),but there has been a slight increasing trend(0.01°C per decade)over the Nigerian Guinea Coast.The annual decreasing trend of DTR in the Nigerian Sahel is mainly attributable to the significant increasing trend in daily minimum temperature(Tmin,0.51°C per decade),which far outstrips the rate of increase in the daily maximum(Tmax,0.17°C per decade).In contrast,the comparable trends in Tmin(0.19°C per decade)and Tmax(0.20°C per decade)may explain the non-significant trend of the DTR averaged over the Guinea Coast region.It is observed that the DTR has decreased more in boreal summer(June–July–August)than in boreal winter(December–January–February)for the regions.Furthermore,it is found that the significant DTR declining trend over the Nigerian Sahel is closely associated with an increasing trend of annual and summer precipitation in the region,but the increasing DTR trend in the Nigerian Guinea Coast region can be attributed to the decreasing trend of cloud cover over the region.
基金Project(2006BAK04B03) supported by the National Basic Research Program of ChinaProject(CX2009B053) supported by Innovation Foundation for Postgraduate Students of Hunan Province,ChinaProject(2009ybfz08) supported by the Doctoral Dissertation of Central South University,China
文摘in order to achieve a more efficient way to accurately detect the position of the fire source of spontaneous combustion underground mine, a simple fire source locating method, based on infrared scanning system which can determine the point where the highest temperature on the surface of igniting ores occurs, was proposed. First, the differential equations that describe heat flow in ore body were presented and the relationship between the surface temperature distribution and the depth and intensity of inner fire source was established with a relatively simple heat transfer model. With the solution of equation, the expression of the relationship between the surface temperature distribution and the inner fire source was deduced and the mathematical-physical model of heat transfer process was set up. Then, with the model, visualization of fire source on the basis of MATLAB simulation platform was realized. The results show that: 1) within 10 m, when the detecting depth is less than 2 m, the temperature perturbation on ores surface can change rapidly, and then slowly; after 4 m, in contrast, it changes very little, and is even close to zero at 10 m; 2) When it is close to self-ignition duration and the detective depths are 2, 5 and 10 m, respectively, the maximum temperature differences are correspondingly 0.5, 0.04 and 0.005 ℃ in the scope of 1 m×1 m; under the same condition, the maximum temperature differences are 1.391, 0.136 and 0.018 ℃, respectively, in the scope of 2 m×2 m. Therefore, this system can be used to measure the temperature differences on the surface of ore body and determine the highest temperature point directly. Also, it is possible to determine the depth of fire source and its intensity by locating method of fire source indirectly.