期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
聚四氟乙烯覆膜滤料的高温热压覆膜工艺 被引量:5
1
作者 林茂泉 吴海波 +1 位作者 张旭东 殷保璞 《东华大学学报(自然科学版)》 CSCD 北大核心 2017年第5期645-650,688,共7页
通过探究聚四氟乙烯覆膜滤料高温热压覆膜工艺,重点分析不同热压时间、压力和温度对覆膜滤料过滤性能的影响,通过单因素分析方法对不同参数的作用效果进行分析.结果表明:随着热压压力增大,滤料的孔径和透气率逐渐下降,而滤料的覆膜牢度... 通过探究聚四氟乙烯覆膜滤料高温热压覆膜工艺,重点分析不同热压时间、压力和温度对覆膜滤料过滤性能的影响,通过单因素分析方法对不同参数的作用效果进行分析.结果表明:随着热压压力增大,滤料的孔径和透气率逐渐下降,而滤料的覆膜牢度持续增加;随着热压温度或热压时间的增加,滤料的孔径和透气率呈现先上升后下降的趋势,而覆膜牢度总体呈现增长趋势.此外,滤料的滤阻、过滤效率的变化规律与孔径的变化规律一致,采用适宜工艺方案制得的高温热压覆膜滤料的过滤效率均达到99%以上. 展开更多
关键词 聚四氟乙烯薄膜 高温热压工艺 孔径
下载PDF
基于热压工艺下,茶梗碎料板强度与茶梗种类的关系探究 被引量:2
2
作者 高品 尾方義人 《建材与装饰》 2017年第47期162-162,共1页
基于高温热压备制茶梗碎料板的工艺,分别使用红茶、绿茶、乌龙茶的茶梗制作非木质人造板,利用万能试验机测定不同材料成型后的力学强度。对不同种类茶的茶梗进行粉碎、振筛,来测定其纤维分布以及纤维形态,以此分析茶种类与茶碎料板力学... 基于高温热压备制茶梗碎料板的工艺,分别使用红茶、绿茶、乌龙茶的茶梗制作非木质人造板,利用万能试验机测定不同材料成型后的力学强度。对不同种类茶的茶梗进行粉碎、振筛,来测定其纤维分布以及纤维形态,以此分析茶种类与茶碎料板力学强度的关系。 展开更多
关键词 高温热压工艺 茶梗碎料板 茶树种类 纤维形态
下载PDF
聚四氟乙烯(PTFE)与玻璃纤维热压覆膜联合机的开发
3
作者 陈亏 高晶 +3 位作者 俞建勇 还伟海 马一梓 王磊 《纺织机械》 2010年第5期15-17,共3页
主要介绍了聚四氟乙烯与玻璃纤维高温热压复合的关键工艺技术,以及生产这种覆膜滤料的新型覆膜联合机设备的工艺流程和主要技术参数。根据聚四氟乙烯薄膜和玻璃纤维的特点,对设备提出了特殊要求,所设计的热压覆膜联合机生产的高温覆膜... 主要介绍了聚四氟乙烯与玻璃纤维高温热压复合的关键工艺技术,以及生产这种覆膜滤料的新型覆膜联合机设备的工艺流程和主要技术参数。根据聚四氟乙烯薄膜和玻璃纤维的特点,对设备提出了特殊要求,所设计的热压覆膜联合机生产的高温覆膜滤料具有较为优良的性能,可广泛应用于烟气过滤等除尘领域,具有很好的发展前景。 展开更多
关键词 聚四氟乙烯薄膜 玻璃纤维 高温热压工艺 新型覆膜联合机
下载PDF
High temperature deformation behavior and optimization of hot compression process parameters in TC11 titanium alloy with coarse lamellar original microstructure 被引量:4
4
作者 鲁世强 李鑫 +2 位作者 王克鲁 董显娟 傅铭旺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期353-360,共8页
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem... The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results. 展开更多
关键词 titanium alloy coarse lamellar microstructure high temperature deformation behavior processing map hot compression process parameter optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部