期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
不平衡工艺参数数据集的高温透平叶片铸件质量预测方法
1
作者 朱铜 艾松 +1 位作者 陈琨 高建民 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第9期94-104,共11页
针对熔模精密铸造工艺参数数据集射线检测(RT)结果存在合格与不合格数量严重不平衡问题,提出一种基于概率分布的合成少数类集成学习(SyMProD-Stacking)的铸件质量预测方法。该方法首先对原始数据集进行预处理以保证数据质量,然后利用Z... 针对熔模精密铸造工艺参数数据集射线检测(RT)结果存在合格与不合格数量严重不平衡问题,提出一种基于概率分布的合成少数类集成学习(SyMProD-Stacking)的铸件质量预测方法。该方法首先对原始数据集进行预处理以保证数据质量,然后利用Z分数去除噪声数据,为每个少数类实例(不合格铸件)分配一个概率并基于此概率分布生成样本数据以获取平衡数据集,利用极端梯度提升模型(XGBoost)对所有工艺参数特征进行重要性排序并剔除部分排名靠后的工艺参数,最后将轻量级梯度提升机(LightGBM)、随机森林(RF)、支持向量机(SVM)和XGBoost模型进行Stacking集成并利用平衡数据集构建质量预测模型。以高温透平叶片制造过程精铸工艺为例,对所提出的质量预测方法进行验证,结果表明:相比于原始数据集构建的预测模型,利用了SyMProD过采样方法构建的预测模型不合格铸件的预测准确率提升了75.4%;相比于单一算法模型,所提质量预测方法的曲线下面积(A_(AUCROC))、几何均值(G_(m))以及F_(1)分数(F_(1))这3项性能指标分别提升了5.48%~11.59%、3.78%~8.92%、5.72%~11.39%,所提出的方法能够很好地预测高温透平叶片精铸过程在不平衡问题下的铸件质量。 展开更多
关键词 高温透平叶片 不平衡问题 过采样方法 集成学习 质量预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部