According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was ...According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.展开更多
The paper presents an experimental study on the heat transfer and flow friction characteristics in a solar air heater channel fitted with delta-winglet type vortex generators (DWs). The experiments are conducted by ...The paper presents an experimental study on the heat transfer and flow friction characteristics in a solar air heater channel fitted with delta-winglet type vortex generators (DWs). The experiments are conducted by varying the airflow rate for Reynolds number in the range of 5000 to 24000 in the test section with a uniform heat-flux applied on the upper channel wall. Firstly, the DW pairs are mounted only at the entrance of the lower wall of the test channel (called DW-E) to create multiple vortex flows at the entry. The effect of two transverse pitches (Re= Pt/H= 1 and 2) at three attack angles (a= 30°, 45° and 60°) of the DW-E with its relative height, b/H= 0.5 (half height of channel) is examined. Secondly, the 30° DWs with three different relative heights (blH = 0.3, 0.4 and 0.5) are placed on the upper wall only (absorber plate, called DW-A) of the test channel. The experimental result reveals that in the first case, the 60° DW-E at Rp = 1 provides the highest heat transfer and friction factor while the 30° DW-E at Rp = 1 performs overall better than the others. In the second case, the 30° DW-A at b/H= 0.5 yields the highest heat transfer and friction factor but the best thermal performance is found at b/H = 0.4.展开更多
In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in...In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in different diameters and liquid heights has been realized using the shear stress transport(SST)turbulence model and the Gamma Theta transition(GTT)model.In the ANSYS CFX software,two models are used in conjunction with an automatic wall treatment which allows for a smooth shift from a wall function(WF)to a low turbulent-Re near wall formulation(LTRW).The results of the models coupled with LTRW are closer to the experimental results compared with the models with WF,indicating that LTRW is more appropriate for the prediction of boundary layer characteristics of orifice flow.Simulation results show that the flow conditions of orifices change with the variation of liquid height.With respect to the turbulence in orifice,the SST model coupled with LTRW is recommended.However,with respect to the transition to turbulence in orifice with an increase in liquid height,the predictions of GTT model coupled with LTRW are superior to those obtained using other models.展开更多
Turbulent kinetic energy budgets are presented for a highly curved flow generated by the collision of plane wall turbulent jet with a low-velocity boundary layer. The different terms are obtained in the vertical plane...Turbulent kinetic energy budgets are presented for a highly curved flow generated by the collision of plane wall turbulent jet with a low-velocity boundary layer. The different terms are obtained in the vertical plane of symmetry by quadratic interpolation of the LDV (Laser Doppler Velocimetry) measurements, for a wall jet-to-boundary layer velocity ratio of 2. The results, which have relevance to flows encountered in powered-lift aircraft operating in ground effect, quantify the structure of the complex ground vortex flow. The analysis of turbulent energy equation terms using the measured data revealed that production by normal and shear stresses are both very important to the turbulent structure of the impact zone of the ground vortex. This is an indication that the modeling of turbulence of a ground vortex requires a good representation of the production by normal stresses which is most important in the collision zone.展开更多
Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is ...Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is actually the investigation of the atmospheric refractive index. The atmospheric structure constant of refractive index, C n 2 , is an important parameter denoting atmospheric turbulence. In this paper, C n 2 is measured during the day and at night and in all four seasons using a high sensitivity micro-thermal meter QHTP-2. The vertical profile of C n 2 in Hefei (0-30 km) is investigated by the analysis of experimental data. The average profile of C n 2 in Hefei exhibits conspicuous day and night differences with increased altitude. The distribution of log(C n 2 ) is nearly normal and has conspicuous seasonal differences.展开更多
In this paper,the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters.To save the computational cost a c...In this paper,the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters.To save the computational cost a channel-like flow model is applied to the urban canopy with free slip condition at the upper boundary.The results show that the domain height is an important parameter for correct evaluation of the dynamic characteristics.The domain height must be greater than 8h(h is the average building height)in order to obtain correct roughness height while displacement height and roughness sublayer are less sensitive to the domain height.The Reynolds number effects on the dynamic characteristics and flow patterns are investigated.The turbulence intensity is stronger inside building cluster at high Reynolds number while turbulence intensity is almost unchanged with Reynolds number above the building cluster.Roughness height increases monotonously with Reynolds number by 20%from Re*=103 to Re*=105 but displacement height is almost unchanged.Within the canopy layer of heterogeneous building clusters,flow structures vary between buildings and turbulence is more active at high Reynolds number.展开更多
The physics of compressible turbulence in high energy density(HED) plasmas is an unchartered experimental area.Simulations of compressible and radiative flows relevant for astrophysics rely mainly on subscale paramete...The physics of compressible turbulence in high energy density(HED) plasmas is an unchartered experimental area.Simulations of compressible and radiative flows relevant for astrophysics rely mainly on subscale parameters. Therefore,we plan to perform turbulent hydrodynamics experiments in HED plasmas(TurboHEDP) in order to improve our understanding of such important phenomena for interest in both communities: laser plasma physics and astrophysics. We will focus on the physics of supernovae remnants which are complex structures subject to fluid instabilities such as the Rayleigh–Taylor and Kelvin–Helmholtz instabilities. The advent of megajoule laser facilities, like the National Ignition Facility and the Laser Megajoule, creates novel opportunities in laboratory astrophysics, as it provides unique platforms to study turbulent mixing flows in HED plasmas. Indeed, the physics requires accelerating targets over larger distances and longer time periods than previously achieved. In a preparatory phase, scaling from experiments at lower laser energies is used to guarantee the performance of future MJ experiments. This subscale experiments allow us to develop experimental skills and numerical tools in this new field of research, and are stepping stones to achieve our objectives on larger laser facilities. We review first in this paper recent advances in high energy density experiments devoted to laboratory astrophysics. Then we describe the necessary steps forward to commission an experimental platform devoted to turbulent hydrodynamics on a megajoule laser facility. Recent novel experimental results acquired on LULI2000, as well as supporting radiative hydrodynamics simulations, are presented. Together with the development of LiF detectors as transformative X-ray diagnostics, these preliminary results are promising on the way to achieve micrometric spatial resolution in turbulent HED physics experiments in the near future.展开更多
Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible tur...Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz's model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.展开更多
基金Project(U1134203)supported by the National Natural Science Foundation of China
文摘According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.
文摘The paper presents an experimental study on the heat transfer and flow friction characteristics in a solar air heater channel fitted with delta-winglet type vortex generators (DWs). The experiments are conducted by varying the airflow rate for Reynolds number in the range of 5000 to 24000 in the test section with a uniform heat-flux applied on the upper channel wall. Firstly, the DW pairs are mounted only at the entrance of the lower wall of the test channel (called DW-E) to create multiple vortex flows at the entry. The effect of two transverse pitches (Re= Pt/H= 1 and 2) at three attack angles (a= 30°, 45° and 60°) of the DW-E with its relative height, b/H= 0.5 (half height of channel) is examined. Secondly, the 30° DWs with three different relative heights (blH = 0.3, 0.4 and 0.5) are placed on the upper wall only (absorber plate, called DW-A) of the test channel. The experimental result reveals that in the first case, the 60° DW-E at Rp = 1 provides the highest heat transfer and friction factor while the 30° DW-E at Rp = 1 performs overall better than the others. In the second case, the 30° DW-A at b/H= 0.5 yields the highest heat transfer and friction factor but the best thermal performance is found at b/H = 0.4.
基金the financial support from the National Basic Research Program of China(No.2009CB219905)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0936)the National Natural Science Foundation of China(No.21176172)
文摘In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in different diameters and liquid heights has been realized using the shear stress transport(SST)turbulence model and the Gamma Theta transition(GTT)model.In the ANSYS CFX software,two models are used in conjunction with an automatic wall treatment which allows for a smooth shift from a wall function(WF)to a low turbulent-Re near wall formulation(LTRW).The results of the models coupled with LTRW are closer to the experimental results compared with the models with WF,indicating that LTRW is more appropriate for the prediction of boundary layer characteristics of orifice flow.Simulation results show that the flow conditions of orifices change with the variation of liquid height.With respect to the turbulence in orifice,the SST model coupled with LTRW is recommended.However,with respect to the transition to turbulence in orifice with an increase in liquid height,the predictions of GTT model coupled with LTRW are superior to those obtained using other models.
文摘Turbulent kinetic energy budgets are presented for a highly curved flow generated by the collision of plane wall turbulent jet with a low-velocity boundary layer. The different terms are obtained in the vertical plane of symmetry by quadratic interpolation of the LDV (Laser Doppler Velocimetry) measurements, for a wall jet-to-boundary layer velocity ratio of 2. The results, which have relevance to flows encountered in powered-lift aircraft operating in ground effect, quantify the structure of the complex ground vortex flow. The analysis of turbulent energy equation terms using the measured data revealed that production by normal and shear stresses are both very important to the turbulent structure of the impact zone of the ground vortex. This is an indication that the modeling of turbulence of a ground vortex requires a good representation of the production by normal stresses which is most important in the collision zone.
基金supported by the National High Technology Research and Development Program of China (GrantNo. 2011AA8061007)
文摘Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is actually the investigation of the atmospheric refractive index. The atmospheric structure constant of refractive index, C n 2 , is an important parameter denoting atmospheric turbulence. In this paper, C n 2 is measured during the day and at night and in all four seasons using a high sensitivity micro-thermal meter QHTP-2. The vertical profile of C n 2 in Hefei (0-30 km) is investigated by the analysis of experimental data. The average profile of C n 2 in Hefei exhibits conspicuous day and night differences with increased altitude. The distribution of log(C n 2 ) is nearly normal and has conspicuous seasonal differences.
基金supported by the University of Macao(Grant No.MYRG157(Y3-L2)-FST11-WZS)the National Natural Science Foundation of China(Grant No.11132005),+1 种基金MOST-2011BAK07B01-03,LIAMA Project TIPEthe National Laboratory for Information Science and Technology
文摘In this paper,the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters.To save the computational cost a channel-like flow model is applied to the urban canopy with free slip condition at the upper boundary.The results show that the domain height is an important parameter for correct evaluation of the dynamic characteristics.The domain height must be greater than 8h(h is the average building height)in order to obtain correct roughness height while displacement height and roughness sublayer are less sensitive to the domain height.The Reynolds number effects on the dynamic characteristics and flow patterns are investigated.The turbulence intensity is stronger inside building cluster at high Reynolds number while turbulence intensity is almost unchanged with Reynolds number above the building cluster.Roughness height increases monotonously with Reynolds number by 20%from Re*=103 to Re*=105 but displacement height is almost unchanged.Within the canopy layer of heterogeneous building clusters,flow structures vary between buildings and turbulence is more active at high Reynolds number.
基金supported by the Agence Nationale de la Recherche under the ANR project TurboHEDP(ANR-15-CE30-0011)
文摘The physics of compressible turbulence in high energy density(HED) plasmas is an unchartered experimental area.Simulations of compressible and radiative flows relevant for astrophysics rely mainly on subscale parameters. Therefore,we plan to perform turbulent hydrodynamics experiments in HED plasmas(TurboHEDP) in order to improve our understanding of such important phenomena for interest in both communities: laser plasma physics and astrophysics. We will focus on the physics of supernovae remnants which are complex structures subject to fluid instabilities such as the Rayleigh–Taylor and Kelvin–Helmholtz instabilities. The advent of megajoule laser facilities, like the National Ignition Facility and the Laser Megajoule, creates novel opportunities in laboratory astrophysics, as it provides unique platforms to study turbulent mixing flows in HED plasmas. Indeed, the physics requires accelerating targets over larger distances and longer time periods than previously achieved. In a preparatory phase, scaling from experiments at lower laser energies is used to guarantee the performance of future MJ experiments. This subscale experiments allow us to develop experimental skills and numerical tools in this new field of research, and are stepping stones to achieve our objectives on larger laser facilities. We review first in this paper recent advances in high energy density experiments devoted to laboratory astrophysics. Then we describe the necessary steps forward to commission an experimental platform devoted to turbulent hydrodynamics on a megajoule laser facility. Recent novel experimental results acquired on LULI2000, as well as supporting radiative hydrodynamics simulations, are presented. Together with the development of LiF detectors as transformative X-ray diagnostics, these preliminary results are promising on the way to achieve micrometric spatial resolution in turbulent HED physics experiments in the near future.
基金supported by the National Natural Science Foundation of China (Grant No. 11102079)the Aeronautical Science Foundation of China (Grant No. 20111456005)
文摘Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz's model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.