-
题名基于高灰度值注意力机制的脑白质高信号分割
- 1
-
-
作者
张伯泉
麦海鹏
陈嘉敏
逄锦聚
-
机构
广东工业大学计算机学院
青岛西海岸新区教育和体育局
-
出处
《计算机与现代化》
2023年第12期67-75,共9页
-
基金
国家自然科学基金资助项目(62076074)
华为“智能基座”人工智能项目(211210176)。
-
文摘
脑白质高信号是脑小血管病的常见影像学表现,对脑小血管病患者临床诊断有重要参考价值。脑白质高信号分割是临床诊断的基础工作之一,往往需要极具经验的医师进行手动刻画,极其耗费时间且繁琐。脑白质高信号是脑核磁共振成像T2加权像或者液体衰减反转恢复序列图像(Fluid Attenuated Inversion Recovery,FLAIR)中的高信号影,其灰度值明显高于其它正常的脑部组织。为提高对脑白质高信号区域的关注,根据脑白质高信号的影像学特征,提出一种具有高灰度值注意力机制的网络模型。基于UNet网络,设计并引入高灰度值注意力模块,使网络模型更加关注于图像中灰度值较高的区域;为提高网络模型的特征提取能力,引入残差混合注意力模块。该方法明显地提升了脑白质高信号分割效果,DSC指标和Recall指标分别达到0.8330和0.8870,优于现有算法。消融实验也验证了高灰度值注意力模块和残差混合注意力模块的有效性。本文为基于FLAIR影像的脑白质高信号病灶分割提供了一种新方法,同时验证了传统图像分割方法与深度学习技术相结合的可行性。
-
关键词
脑白质高信号
深度学习
医学图像分割
UNet网络
高灰度值注意力机制
-
Keywords
whitematterhyperintensities
deeplearning
medicalimagesegmentation
UNet
highgrayvalueattentionmechanism
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-