The large scale development of high natural gamma sandstones has been discovered in the Chang 73 Submember of the Triassic Yanchang Formation in the Ordos Basin, China. High natural gamma sandstones consist of terrige...The large scale development of high natural gamma sandstones has been discovered in the Chang 73 Submember of the Triassic Yanchang Formation in the Ordos Basin, China. High natural gamma sandstones consist of terrigenous detrital rocks with particle sizes ranging from silt to sand. They represent turbidite deposits characterized by high gamma ray values that are more than 180 American Petroleum Institute (API) units on a natural gamma ray log profile. For a long time, very high natural gamma sandstones had been identified as high-quality source rocks, such as oil shales, from conventional well log profiles, such as natural gamma ray well logs. Therefore, predicting the distribution of high natural gamma sandstones was studied. The sedimentary, lithological, and well log characteristics, as well as the genesis of the high radioactivity of high natural gamma sandstones were analyzed in the Chang 73 Submember. Thorium (Th), uranium (U) and other radioactive elements were found, carried by deep hydrothermal activity, and probably resulted in the formation of a relatively high radioactive zone in the cross-section, where high natural gamma sandstones usually develop in large quantities. This caused many turbidite sand bodies, which should have a continuous distribution in the cross-section, to appear to have a discontinuous distribution, when using conventional well log profiles, such as natural gamma ray well logs. From the above mentioned apparent discontinuous distribution of turbidite sand bodies in the cross-section, a continuous distribution can be predicted. It is obvious that the prediction of areas of continuous turbidite sand bodies in the cross-section usually corresponds with areas where high natural gamma sandstones are developed in large quantities. Exploration and development practice demonstrated that the developed method is fast and effective in predicting high natural gamma sandstones in the Chang 73 Submember.展开更多
A facile and efficient synthesis of N-sulfonyl-N,N-disubstituted amidines has been achieved via a CuI-catalyzed three-component free-radical coupling reaction of tertiary amines and arenesulfonyl azides with terminal ...A facile and efficient synthesis of N-sulfonyl-N,N-disubstituted amidines has been achieved via a CuI-catalyzed three-component free-radical coupling reaction of tertiary amines and arenesulfonyl azides with terminal alkynes in the presence of azodiisobutyronitrile(AIBN).The reaction mechanism of this reaction has also been studied.展开更多
基金Project(18GK28)supported by the Doctoral Scientific Research Starting Foundation for the Yulin University,ChinaProject(20106101110020)supported by the University Research Fund of Science and Technology Development Center of Ministry of Education,ChinaProject(BJ08133-3)supported by the Key Fund Project of Continental Dynamics National Key Laboratory of Northwest University,China
文摘The large scale development of high natural gamma sandstones has been discovered in the Chang 73 Submember of the Triassic Yanchang Formation in the Ordos Basin, China. High natural gamma sandstones consist of terrigenous detrital rocks with particle sizes ranging from silt to sand. They represent turbidite deposits characterized by high gamma ray values that are more than 180 American Petroleum Institute (API) units on a natural gamma ray log profile. For a long time, very high natural gamma sandstones had been identified as high-quality source rocks, such as oil shales, from conventional well log profiles, such as natural gamma ray well logs. Therefore, predicting the distribution of high natural gamma sandstones was studied. The sedimentary, lithological, and well log characteristics, as well as the genesis of the high radioactivity of high natural gamma sandstones were analyzed in the Chang 73 Submember. Thorium (Th), uranium (U) and other radioactive elements were found, carried by deep hydrothermal activity, and probably resulted in the formation of a relatively high radioactive zone in the cross-section, where high natural gamma sandstones usually develop in large quantities. This caused many turbidite sand bodies, which should have a continuous distribution in the cross-section, to appear to have a discontinuous distribution, when using conventional well log profiles, such as natural gamma ray well logs. From the above mentioned apparent discontinuous distribution of turbidite sand bodies in the cross-section, a continuous distribution can be predicted. It is obvious that the prediction of areas of continuous turbidite sand bodies in the cross-section usually corresponds with areas where high natural gamma sandstones are developed in large quantities. Exploration and development practice demonstrated that the developed method is fast and effective in predicting high natural gamma sandstones in the Chang 73 Submember.
基金National Natural Science Foundation of China (20872001)the Anhui Education Department (TD200707 & KJ2008A064)+1 种基金the Program for the NCET (NCET-10-0004)the Research Culture Funds of Anhui Normal University (2010rcpy041) for their financial support
文摘A facile and efficient synthesis of N-sulfonyl-N,N-disubstituted amidines has been achieved via a CuI-catalyzed three-component free-radical coupling reaction of tertiary amines and arenesulfonyl azides with terminal alkynes in the presence of azodiisobutyronitrile(AIBN).The reaction mechanism of this reaction has also been studied.