期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
产高热花岗岩地球化学识别标志
1
作者 勃兰.,JA 熊清华 《江西地质》 1989年第4期363-383,共21页
关键词 花岗岩 高热花岗岩 地球化学 识别标准
全文增补中
海南尖峰岭花岗岩体的形成时代、成因及其与抱伦金矿的关系 被引量:63
2
作者 谢才富 朱金初 +5 位作者 丁式江 张业明 陈沐龙 付杨荣 付太安 李志宏 《岩石学报》 SCIE EI CAS CSCD 北大核心 2006年第10期2493-2508,共16页
尖峰岭复式岩基主要由尖峰岭超单元的中粗粒似斑状、细粒似斑状、粗中粒及细粒黑云母正长花岗岩组成。该超单元富硅、富钾、弱过铝一准铝质,碱度率较高,属碱性系列。总体上富含 Rb、Cs、Th、U、Pb、Zr、Hf、Y 等微量元素,强烈亏损Ba、Sr... 尖峰岭复式岩基主要由尖峰岭超单元的中粗粒似斑状、细粒似斑状、粗中粒及细粒黑云母正长花岗岩组成。该超单元富硅、富钾、弱过铝一准铝质,碱度率较高,属碱性系列。总体上富含 Rb、Cs、Th、U、Pb、Zr、Hf、Y 等微量元素,强烈亏损Ba、Sr、P、Ti 和适度亏损Nb、Ta。轻重稀土分异较明显,(La/Yb)_N=8 29~30.36;中等—强烈亏损 Eu,δEu=0.43~0.05;早期单元稀土元素含量高而晚期单元明显降低。(^(87)Sr/^(86)Sr)_i和 T_(2DM)较高,分别为0.71658~0.71703和1639~1709Ma;而ε_(Nd)(t)值较低,为-7.59~-8.46。锆石 SHRIMP U-Pb 法获得其结晶年龄为249±5Ma。尖峰岭超单元的成因类型介于 S 型和铝质A型花岗岩之间,并且类似于高热(HHP)花岗岩,是在早三叠世后造山环境岩石圈拆沉、热软流圈上涌的动力学机制下,地壳变杂砂岩或变砂屑岩受到幔源流体富集后发生部分熔融的产物。熔融温度大约为770~790℃,压力约(10~12.5)×10~8Pa(相当于深约34~42km)。熔体侵位后发生过较强的结晶分异作用。岩体内部降温至约300℃的时代(221~209Ma)与其外接触带上抱伦金矿的成矿时代(220~200Ma)相一致,比岩体结晶年龄晚了约30~40Ma。岩体内部长期保持中高温环境,有利于形成热水溶液对流循环系统而成矿。但该岩体主要是为金成矿作用提供了热动力,而不是主要提供了热液流体和矿质,因此,将抱伦金矿称为'与高热花岗岩伴生的热液型矿床'更恰当。 展开更多
关键词 印支期 尖峰岭岩体 高热花岗岩 抱伦金矿 后造山 SHRIMP U—Pb年龄 海南
下载PDF
Comparison of mechanical properties in high temperature and thermal treatment granite 被引量:21
3
作者 尹土兵 舒荣华 +2 位作者 李夕兵 王品 刘希灵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1926-1937,共12页
Static mechanical experiments were carried out on granite after and under different temperatures using an electro-hydraulic and servo-controlled material testing machine with a heating device. Variations in obvious fo... Static mechanical experiments were carried out on granite after and under different temperatures using an electro-hydraulic and servo-controlled material testing machine with a heating device. Variations in obvious form, stress-strain curve, peak strength, peak strain and elastic modulus with temperature were analyzed and the essence of rock failure modes was explored. The results indicate that, compared with granite after the high temperature treatment, the brittle-ductile transition critical temperature is lower, the densification stage is longer, the elastic modulus is smaller and the damage is larger under high temperature. In addition, the peak stress is lower and the peak strain is greater, but both of them change more obviously with the increase of temperature compared with that of granite after the high temperature treatment. Furthermore, the failure modes of granite after the high temperature treatment and under high temperature show a remarkable difference. Below 100 ℃, the failure modes of granite under both conditions are the same, presenting splitting failure. However, after 100 ℃, the failure modes of granite after the high temperature treatment and under high temperature present splitting failure and shear failure, respectively. 展开更多
关键词 GRANITE thermal treatment high temperature effect static mechanical properties failure properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部