The activation of multisite high-entropy alloy(HEA)electrocatalysts is helpful for improving the atomic utilization of each metal in water electrolysis catalysis.Herein,well-dispersed HEA nanocrystals on Nrich graphen...The activation of multisite high-entropy alloy(HEA)electrocatalysts is helpful for improving the atomic utilization of each metal in water electrolysis catalysis.Herein,well-dispersed HEA nanocrystals on Nrich graphene with abundant M–pyridinic N–C bonds were synthesized through an ultrasonic-assisted confinement synthesis method.Operando Raman analysis and density functional theory calculations revealed that the electrocatalysts presented the optimal electronic rearrangement with fast ratedetermined H_(2)O dissociation kinetics and favorable H^(*)adsorption behavior that greatly enhanced hydrogen generation in alkaline electrolyte.A small overpotential of only 138.6 mV was required to obtain the current density of 100 mA cm^(-2) and the Tafel slope of as low as 33.0 mV dec^(-1),which was considerably smaller than the overpotentials of the counterpart with poor M–pyridinic N–C bonds(290.4 mV)and commercial Pt/C electrocatalysts(168.6 mV).The atomic structure,coordination environment,and electronic structure were clarified.This work provides a new avenue toward activating HEA as advanced electrocatalysts and promotes the research on HEA for energy-related electrolysis.展开更多
基金supported by the National Natural Science Foundation of China(21838003,51621002)the Innovation Program of Shanghai Municipal Education Commissionthe Fundamental Research Funds for the Central Universities。
文摘The activation of multisite high-entropy alloy(HEA)electrocatalysts is helpful for improving the atomic utilization of each metal in water electrolysis catalysis.Herein,well-dispersed HEA nanocrystals on Nrich graphene with abundant M–pyridinic N–C bonds were synthesized through an ultrasonic-assisted confinement synthesis method.Operando Raman analysis and density functional theory calculations revealed that the electrocatalysts presented the optimal electronic rearrangement with fast ratedetermined H_(2)O dissociation kinetics and favorable H^(*)adsorption behavior that greatly enhanced hydrogen generation in alkaline electrolyte.A small overpotential of only 138.6 mV was required to obtain the current density of 100 mA cm^(-2) and the Tafel slope of as low as 33.0 mV dec^(-1),which was considerably smaller than the overpotentials of the counterpart with poor M–pyridinic N–C bonds(290.4 mV)and commercial Pt/C electrocatalysts(168.6 mV).The atomic structure,coordination environment,and electronic structure were clarified.This work provides a new avenue toward activating HEA as advanced electrocatalysts and promotes the research on HEA for energy-related electrolysis.