Novel carbon-carbon ultracapacitors and hybrid lithium-carbon devices are described. New approach to the design of electrode materials and electrochemical systems followed by the improved design of ultracapacitor cell...Novel carbon-carbon ultracapacitors and hybrid lithium-carbon devices are described. New approach to the design of electrode materials and electrochemical systems followed by the improved design of ultracapacitor cells and modules have resulted in prototypes of superior performance that was verified by independent tests in the Institute of Transportation Studies, UC (ultracapacitor) Davis, in JME Inc., in Wayne State University, and in some other labs. All the test results confirm the superlative performance of the devices developed: carbon-carbon ultracapacitors demonstrate the extremely low inner resistance resulting in the highest power capability and efficiency that also alleviates the cooling requirements and improves safety. Our "parallel" hybrid devices demonstrate substantially higher energy density than competing LIC (lithium ion capacitor) technologies keeping at the same time the high power density, comparable with the best carbon-carbon ultracapacitors available in the market. In order to make ultracapacitor technology even more attractive to automakers, new organic electrolytes (not ionic liquids) have been developed and are currently under testing at temperatures about 100 ℃ and voltages up to 3.0 V.展开更多
The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitivel...The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitively cover the wide range of possible demands, electrochemical technologies are one of the most promising for many of them. For the realization of this promise, new materials fulfilling criteria such as high energy density, high power density, competitive cost, reliability, and environmental compatibility need to be developed in the near future. Electrochemical energy storage devices can be classified into two main technologies: supercapacitors and batteries (including redox flow batteries). Materials and applications for these technologies are discussed and compared, listing current status, technical and strategic challenges.展开更多
As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, lar...As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, large power delivery, long cycle life, obvious safety, and low cost. However, the unsatisfying energy density is the inhabiting issue for the wide commercial applications. As the energy density(E, W h kg?1) is directly proportional to specific capacitance(C, F g?1) and the square of operating voltage(V, V), in this review, we summarize the recent progress in two sections: the exploration of high-performance electrode materials to achieve high specific capacitance and the construction of high-voltage supercapacitor systems for high working voltage. The progressive explorations and developments in supercapacitors could guide the future research towards high-performance, low-cost, and safe energy storage devices.展开更多
Exfoliated graphite oxide was prepared by an improved Hummers method and was then reduced to graphene with hydrazine in the presence of ammonium hydroxide.N2adsorption–desorption measurement showed that graphene so o...Exfoliated graphite oxide was prepared by an improved Hummers method and was then reduced to graphene with hydrazine in the presence of ammonium hydroxide.N2adsorption–desorption measurement showed that graphene so obtained had a specific surface area as high as 818 m2/g.Galvanostatic charge/discharge curves demonstrated that the as-prepared graphene exhibited a specific capacitance of 186.9 F/g at a current density of 0.1 A/g and that about 96%of the specific capacitance was retained after 2000 cycles at a current density of 5 A/g.展开更多
Compared with other energy storage devices, supercapacitors have superior qualities,including a long cycling life,fast charge/discharge processes,and a high safety rating.The practical use of supercapacitor devices is...Compared with other energy storage devices, supercapacitors have superior qualities,including a long cycling life,fast charge/discharge processes,and a high safety rating.The practical use of supercapacitor devices is hindered by their low energy density.Here,we briefly review the factors that influence the energy density of supercapacitors.Furthermore,possible pathways for enhancing the energy density via improving capacitance and working voltage are discussed. In particular,we offer our perspective on the most exciting developments regarding high-energy-density supercapacitors, with an emphasis on future trends.We conclude by discussing the various types of supercapacitors and highlight crucial tasks for achieving a high energy density.展开更多
Flexible supercapacitors (SCs) are attractive energy storage devices for wearable electronics, but their applications are hindered by their low volumetric energy densities. Two dimensional (2D) non-carbon nanomaterial...Flexible supercapacitors (SCs) are attractive energy storage devices for wearable electronics, but their applications are hindered by their low volumetric energy densities. Two dimensional (2D) non-carbon nanomaterials are the most promising pseudocapacitive materials for high volumetric capacitance electrodes. However, they are poorly conductive and prone to self-stacking, which results in unsatisfactory electrochemical performance. In this work, large-scale V2O5·nH2O ultrathin nanosheets are synthesized by a facile and scalable method and transformed into layered and compact composite films with one-dimensional carbon nanotubes (CNTs). The self-standing films show an optimized volumetric capacitance of 521.0Fcm^-3 with only 10 wt% of CNTs, which is attributed to dramatically enhanced electrical conductivity beyond the electrical percolation threshold, high dispersion of pseudocapacitive V2O5·nH2O nanosheets, and high mass density of the films. All-solid-state flexible SCs made of V2O5·nH2O/CNTs films show a maximum energy density of 17.4WhL^-1.展开更多
The search of electrode materials with high electrochemical activity is one of key solutions to actualize both high energy density and high power density in a supercapacitor. Recently, we have developed one novel kind...The search of electrode materials with high electrochemical activity is one of key solutions to actualize both high energy density and high power density in a supercapacitor. Recently, we have developed one novel kind of rare earth and transitional metal colloidal supercapacitors, which can deliver higher specific capacitance than electrical double-layer capacitors(EDLC) and traditional pseudocapacitors. The electrode materials in colloidal supercapacitors are in-situ formed electroactive colloids, which were transformed from commercial rare earth and transitional metal salts in alkaline electrolyte by chemical and electrochemical assisted coprecipitation. In these colloidal supercapacitors, multiple-electron Faradaic redox reactions can be utilized, which can deliver ultrahigh specific capacitance often larger than one-electron capacitance. Multiple-valence metal cations used in our designed colloidal supercapacitors mainly include Ce3+, Yb3+, Er3+, Fe3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Sn2+ and Sn4+. The colloidal supercapacitors can be served as the promising next-generation high performance supercapacitors.展开更多
With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical...With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical energy storage and power supply. However, one of the key challenges for SCs is their limited energy density, which has hindered their wider application in the field of energy storage. Despite significant progress has been achieved in the fabrication of high-energy density positive electrodes materials, negative electrode materials with high capacitance and a wide potential window are relatively less explored. In this review, we introduced some new negative electrode materials except for common carbon-based materials and what's more, based on our team's work recently, we put forward some new strategies to solve their inherent shortcoming as electrode material for SCs.展开更多
文摘Novel carbon-carbon ultracapacitors and hybrid lithium-carbon devices are described. New approach to the design of electrode materials and electrochemical systems followed by the improved design of ultracapacitor cells and modules have resulted in prototypes of superior performance that was verified by independent tests in the Institute of Transportation Studies, UC (ultracapacitor) Davis, in JME Inc., in Wayne State University, and in some other labs. All the test results confirm the superlative performance of the devices developed: carbon-carbon ultracapacitors demonstrate the extremely low inner resistance resulting in the highest power capability and efficiency that also alleviates the cooling requirements and improves safety. Our "parallel" hybrid devices demonstrate substantially higher energy density than competing LIC (lithium ion capacitor) technologies keeping at the same time the high power density, comparable with the best carbon-carbon ultracapacitors available in the market. In order to make ultracapacitor technology even more attractive to automakers, new organic electrolytes (not ionic liquids) have been developed and are currently under testing at temperatures about 100 ℃ and voltages up to 3.0 V.
文摘The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitively cover the wide range of possible demands, electrochemical technologies are one of the most promising for many of them. For the realization of this promise, new materials fulfilling criteria such as high energy density, high power density, competitive cost, reliability, and environmental compatibility need to be developed in the near future. Electrochemical energy storage devices can be classified into two main technologies: supercapacitors and batteries (including redox flow batteries). Materials and applications for these technologies are discussed and compared, listing current status, technical and strategic challenges.
基金supported by the National Natural Science Foundation of China(Grant Nos.51572129&U1407106)Natural Science Foundation of Jiangsu Province(Grant No.BK20131349)+1 种基金A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Central Universities(Grant No.30915011204)
文摘As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, large power delivery, long cycle life, obvious safety, and low cost. However, the unsatisfying energy density is the inhabiting issue for the wide commercial applications. As the energy density(E, W h kg?1) is directly proportional to specific capacitance(C, F g?1) and the square of operating voltage(V, V), in this review, we summarize the recent progress in two sections: the exploration of high-performance electrode materials to achieve high specific capacitance and the construction of high-voltage supercapacitor systems for high working voltage. The progressive explorations and developments in supercapacitors could guide the future research towards high-performance, low-cost, and safe energy storage devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.51072047,21271067)the Program for Innovative Research Team in University(Grant No.IRT-1237)
文摘Exfoliated graphite oxide was prepared by an improved Hummers method and was then reduced to graphene with hydrazine in the presence of ammonium hydroxide.N2adsorption–desorption measurement showed that graphene so obtained had a specific surface area as high as 818 m2/g.Galvanostatic charge/discharge curves demonstrated that the as-prepared graphene exhibited a specific capacitance of 186.9 F/g at a current density of 0.1 A/g and that about 96%of the specific capacitance was retained after 2000 cycles at a current density of 5 A/g.
基金financially supported by the National Natural Science Foundation of China(21371023)
文摘Compared with other energy storage devices, supercapacitors have superior qualities,including a long cycling life,fast charge/discharge processes,and a high safety rating.The practical use of supercapacitor devices is hindered by their low energy density.Here,we briefly review the factors that influence the energy density of supercapacitors.Furthermore,possible pathways for enhancing the energy density via improving capacitance and working voltage are discussed. In particular,we offer our perspective on the most exciting developments regarding high-energy-density supercapacitors, with an emphasis on future trends.We conclude by discussing the various types of supercapacitors and highlight crucial tasks for achieving a high energy density.
基金supported by the National Natural Science Foundation of China (51702048 and 21603157)the National Basic Research Program of China (2015CB932600)Jiangxi Provincial Department of Education (GJJ170459 and GJJ170457)
文摘Flexible supercapacitors (SCs) are attractive energy storage devices for wearable electronics, but their applications are hindered by their low volumetric energy densities. Two dimensional (2D) non-carbon nanomaterials are the most promising pseudocapacitive materials for high volumetric capacitance electrodes. However, they are poorly conductive and prone to self-stacking, which results in unsatisfactory electrochemical performance. In this work, large-scale V2O5·nH2O ultrathin nanosheets are synthesized by a facile and scalable method and transformed into layered and compact composite films with one-dimensional carbon nanotubes (CNTs). The self-standing films show an optimized volumetric capacitance of 521.0Fcm^-3 with only 10 wt% of CNTs, which is attributed to dramatically enhanced electrical conductivity beyond the electrical percolation threshold, high dispersion of pseudocapacitive V2O5·nH2O nanosheets, and high mass density of the films. All-solid-state flexible SCs made of V2O5·nH2O/CNTs films show a maximum energy density of 17.4WhL^-1.
基金supported by the National Natural Science Foundation of China(Grant Nos.51125009&91434118)the National Natural Science Foundation for Creative Research Group(Grant No.21221061)+1 种基金the External Cooperation Program of BIC,Chinese Academy of Sciences(Grant No.121522KYS820150009)the Hundred Talents Program of the Chinese Academy of Sciences
文摘The search of electrode materials with high electrochemical activity is one of key solutions to actualize both high energy density and high power density in a supercapacitor. Recently, we have developed one novel kind of rare earth and transitional metal colloidal supercapacitors, which can deliver higher specific capacitance than electrical double-layer capacitors(EDLC) and traditional pseudocapacitors. The electrode materials in colloidal supercapacitors are in-situ formed electroactive colloids, which were transformed from commercial rare earth and transitional metal salts in alkaline electrolyte by chemical and electrochemical assisted coprecipitation. In these colloidal supercapacitors, multiple-electron Faradaic redox reactions can be utilized, which can deliver ultrahigh specific capacitance often larger than one-electron capacitance. Multiple-valence metal cations used in our designed colloidal supercapacitors mainly include Ce3+, Yb3+, Er3+, Fe3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Sn2+ and Sn4+. The colloidal supercapacitors can be served as the promising next-generation high performance supercapacitors.
基金supported by the National Natural Science Foundation of China(Grant Nos.51173212&21273290)the National Basic Research Program of China("973"Project)(Grant No.2015CB932304)+4 种基金the Natural Science Foundations of Guangdong Province(Grant Nos.S2013020012833&S2013030013474)Fundamental Research Fund for the Central Universities(Grant No.13lgpy51)SRF for ROCS,SEM(Grant No.[2012]1707)the Project of High Level Talents in Higher School of Guangdong Province,and Open-End Fund of Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University)Ministry of Education,and the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120171110043)
文摘With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical energy storage and power supply. However, one of the key challenges for SCs is their limited energy density, which has hindered their wider application in the field of energy storage. Despite significant progress has been achieved in the fabrication of high-energy density positive electrodes materials, negative electrode materials with high capacitance and a wide potential window are relatively less explored. In this review, we introduced some new negative electrode materials except for common carbon-based materials and what's more, based on our team's work recently, we put forward some new strategies to solve their inherent shortcoming as electrode material for SCs.