期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
电容提取的新摄动方程及小波边界元解法 被引量:1
1
作者 校金友 曹衍闯 +1 位作者 Johannes Tausch 张铎 《计算物理》 EI CSCD 北大核心 2010年第2期240-244,共5页
提出一种解决含高电容率介质结构电容提取问题的新摄动方程,使计算时间减少一半.建立新摄动方程的快速小波Galerkin边界元解法.算例证明新摄动方程精度高且受介质电容率影响小;用小波Galerkin边界元求解的效率高,时间和内存消耗达到最优... 提出一种解决含高电容率介质结构电容提取问题的新摄动方程,使计算时间减少一半.建立新摄动方程的快速小波Galerkin边界元解法.算例证明新摄动方程精度高且受介质电容率影响小;用小波Galerkin边界元求解的效率高,时间和内存消耗达到最优O(N)(N为未知量数目). 展开更多
关键词 电容提取 等效电荷法 高电容率 小波Galerkin边界元
下载PDF
Influence of heat treatment on electrochemical properties of Ti_(1.4)V_(0.6)Ni alloy electrode containing icosahedral quasicrystalline phase 被引量:1
2
作者 刘万强 张姗姗 王立民 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3034-3038,共5页
The structures and electrochemical properties of the Ti1.4V0.6Ni ribbon before and after heat treatment are investigated systematically. The structure of the sample is characterized by X-ray powder diffraction analysi... The structures and electrochemical properties of the Ti1.4V0.6Ni ribbon before and after heat treatment are investigated systematically. The structure of the sample is characterized by X-ray powder diffraction analysis. Electrochemical properties including the discharge capacity, the cyclic stability and the high-rate discharge ability are tested. X-ray powder diffraction analysis shows that after heat treatment at 590 °C for 30 min, all samples mainly consist of the icosahedral quasicrystal phase (I-phase), Ti2Ni phase (FCC), V-based solid solution phase (BCC) and C14 Laves phase (hexagonal). Electrochemical measurements show that the maximum discharge capacity of the alloy electrode after heat treatment is 330.9 mA?h/g under the conditions that the discharge current density is 30 mA/g and the temperature is 30 °C. The result indicates that the cyclic stability and the high-rate discharge ability are all improved. In addition, the electrochemical kinetics of the alloy electrode is also studied by electrochemical impedance spectroscopy (EIS) and hydrogen diffusion coefficient (D). 展开更多
关键词 QUASICRYSTAL Ti1.4V0.6Ni alloy electrochemical properties cyclic stability high-rate discharge discharge capacity
下载PDF
Analysis and design of sigma-delta interface circuit for quartz flexural pendulum accelerometer
3
作者 周薇 蔡体菁 《Journal of Southeast University(English Edition)》 EI CAS 2011年第3期266-269,共4页
For the high resolution required in a digital interface circuit of an accelerometer used in feeble gravity measurement, a switched-capacitor (SC) sigma-delta modulator (SDM) is proposed. Based on the principle and... For the high resolution required in a digital interface circuit of an accelerometer used in feeble gravity measurement, a switched-capacitor (SC) sigma-delta modulator (SDM) is proposed. Based on the principle and the topology structure of the SDMs, the influence of oversampling ratio, bits of an internal quantizer and the cascaded structure on weak signal detecting precision is analyzed, and an ideal low-distortion SDM with a second-order 1-bit structure satisfying the high- resolution interface circuit of an accelerometer is designed. With the research on non-idealities of each SDM block in the SC circuit implementation and their impacts on power consumption, the realized parameters of low-power SDMs based on different bandwidths are devised and the power consumption of each SDM is estimated. Time-domain behavioral simulation is explored based on Simulink. The results demonstrate that a 21- bit resolution of the designed SDMs can be achieved on the premise of low power, and the parameters for the circuit implementation can be directed to the transistor-level circuit design. 展开更多
关键词 switched-capacitor (SC) circuit modulator (SDM) high resolution NON-IDEALITY low sigma-delta power
下载PDF
A research on high-temperature permittivity and loss tangent of low-loss dielectric by resonant-cavity technique 被引量:1
4
作者 曹茂盛 Hou Zhiling +1 位作者 Shi Xiaoling Wang Fuchi 《High Technology Letters》 EI CAS 2007年第3期279-282,共4页
Resonant-cavity technique was introduced to measure the permittivity and loss tangent of low-loss dielectrics. The dielectric properties at 9-10 GHz are measured accurately at the temperature up to 800 ℃ by the reson... Resonant-cavity technique was introduced to measure the permittivity and loss tangent of low-loss dielectrics. The dielectric properties at 9-10 GHz are measured accurately at the temperature up to 800 ℃ by the resonant cavity technique. The only electrical parameters that need to be measured are quality factors (Q) and resonant length (L) of resonant cavity loaded and unloaded with dielectric sample. Moreover, the error caused by thermal expansion effect was resolved by error analysis and experimental calibration. 展开更多
关键词 high temperature resonant cavity method PERMITTIVITY errors calibration
下载PDF
New Approach to Ultracapacitor Technology: What it Can Offer to Electrified Vehicles
5
作者 Yurii Maletin Natalia Stryzhakova +5 位作者 Sergii Zelinskyi Sergey Chemukhin Dmytro Tretyakov Hugo Mosqueda Natalia Davydenko Dmytro Drobnyi 《Journal of Energy and Power Engineering》 2015年第6期585-591,共7页
Novel carbon-carbon ultracapacitors and hybrid lithium-carbon devices are described. New approach to the design of electrode materials and electrochemical systems followed by the improved design of ultracapacitor cell... Novel carbon-carbon ultracapacitors and hybrid lithium-carbon devices are described. New approach to the design of electrode materials and electrochemical systems followed by the improved design of ultracapacitor cells and modules have resulted in prototypes of superior performance that was verified by independent tests in the Institute of Transportation Studies, UC (ultracapacitor) Davis, in JME Inc., in Wayne State University, and in some other labs. All the test results confirm the superlative performance of the devices developed: carbon-carbon ultracapacitors demonstrate the extremely low inner resistance resulting in the highest power capability and efficiency that also alleviates the cooling requirements and improves safety. Our "parallel" hybrid devices demonstrate substantially higher energy density than competing LIC (lithium ion capacitor) technologies keeping at the same time the high power density, comparable with the best carbon-carbon ultracapacitors available in the market. In order to make ultracapacitor technology even more attractive to automakers, new organic electrolytes (not ionic liquids) have been developed and are currently under testing at temperatures about 100 ℃ and voltages up to 3.0 V. 展开更多
关键词 ULTRACAPACITOR hybrid device high power large energy.
下载PDF
High Voltage Pulse Power and the Technics for the Capacitor Power-Storage Type
6
作者 KANG Zihua WANG Mingwei QIAN Jiamei RAO Jun LI Xiujuan ZHENG Tieliu WANG Xuehua 《Southwestern Institute of Physics Annual Report》 2004年第1期73-76,共4页
Lower hybrid wave (LHW), electro cyclotron (EC) and neutral beam injection (NBI) etc. are the important methods of auxiliary heating. They would be devoted to the HL-2A tokamak step by step. In order to satisfy ... Lower hybrid wave (LHW), electro cyclotron (EC) and neutral beam injection (NBI) etc. are the important methods of auxiliary heating. They would be devoted to the HL-2A tokamak step by step. In order to satisfy the debug of each system and the need of the experiment, the system should be equipped with high voltage pulse power (HVPP) according to the requirement. 展开更多
关键词 Capacitor power-storage High voltage pulse power
下载PDF
Electrochemical Energy Storage Technologies and Applications
7
作者 Raul Diaz 《Journal of Energy and Power Engineering》 2014年第5期794-804,共11页
The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitivel... The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitively cover the wide range of possible demands, electrochemical technologies are one of the most promising for many of them. For the realization of this promise, new materials fulfilling criteria such as high energy density, high power density, competitive cost, reliability, and environmental compatibility need to be developed in the near future. Electrochemical energy storage devices can be classified into two main technologies: supercapacitors and batteries (including redox flow batteries). Materials and applications for these technologies are discussed and compared, listing current status, technical and strategic challenges. 展开更多
关键词 BATTERIES SUPERCAPACITORS renewable energy distributed generation electric transport.
下载PDF
Exploration and progress of high-energy supercapacitors and related electrode materials 被引量:2
8
作者 YANG Mei XIA Hui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第11期1851-1863,共13页
As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, lar... As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, large power delivery, long cycle life, obvious safety, and low cost. However, the unsatisfying energy density is the inhabiting issue for the wide commercial applications. As the energy density(E, W h kg?1) is directly proportional to specific capacitance(C, F g?1) and the square of operating voltage(V, V), in this review, we summarize the recent progress in two sections: the exploration of high-performance electrode materials to achieve high specific capacitance and the construction of high-voltage supercapacitor systems for high working voltage. The progressive explorations and developments in supercapacitors could guide the future research towards high-performance, low-cost, and safe energy storage devices. 展开更多
关键词 electrochemical capacitors high-energy supercapacitors electrode materials energy density energy storage systems
原文传递
Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries 被引量:19
9
作者 Zhen-Yi Gu Jin-Zhi Guo +6 位作者 Zhong-Hui Sun Xin-Xin Zhao Wen-Hao Li Xu Yang Hao-Jie Liang Chen-De Zhao Xing-Long Wu 《Science Bulletin》 SCIE EI CAS CSCD 2020年第9期702-710,M0003,共10页
One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared success... One main challenge for phosphate cathodes in sodium-ion batteries(SIBs)is to increase the working voltage and energy density to promote its practicability.Herein,an advanced Na3V2(PO4)2F3@C cathode is prepared successfully for sodium-ion full cells.It is revealed that,carbon coating can not only enhance the electronic conductivity and electrode kinetics of Na3V2(PO4)2F3@C and inhibit the growth of particles(i.e.,shorten the Na^+-migration path),but also unexpectedly for the first time adjust the dis-/charging plateaux at different voltage ranges to increase the mean voltage(from 3.59 to 3.71 V)and energy density from 336.0 to 428.5 Wh kg^-1 of phosphate cathode material.As a result,when used as cathode for SIBs,the prepared Na3V2(PO4)2F3@C delivers much improved electrochemical properties in terms of larger specifc capacity(115.9 vs.93.5 mAh g^-1),more outstanding high-rate capability(e.g.,87.3 vs.60.5 mAh g^-1 at 10 C),higher energy density,and better cycling performance,compared to pristine Na3V2(PO4)2F3.Reasons for the enhanced electrochemical properties include ionicity enhancement of lattice induced by carbon coating,improved electrode kinetics and electronic conductivity,and high stability of lattice,which is elucidated clearly through the contrastive characterization and electrochemical studies.Moreover,excellent energy-storage performance in sodium-ion full cells further demonstrate the extremely high possibility of Na3V2(PO4)2F3@C cathode for practical applications. 展开更多
关键词 Sodium-ion batteries CATHODE Working voltage Na3V2(PO4)2F3 In-situ XRD
原文传递
All-climate aqueous Na-ion batteries using “water-in-salt” electrolyte 被引量:6
10
作者 Yu Zhang Jie Xu +4 位作者 Zhi Li Yanrong Wang Sijia Wang Xiaoli Dong Yonggang Wang 《Science Bulletin》 SCIE EI CSCD 2022年第2期161-170,M0004,共11页
Aqueous Na-ion batteries have been extensively studied for large-scale energy storage systems. However,their wide application is still limited by their inferior cycle stability(<3000 cycles) and poor temperature to... Aqueous Na-ion batteries have been extensively studied for large-scale energy storage systems. However,their wide application is still limited by their inferior cycle stability(<3000 cycles) and poor temperature tolerance. Furthermore, many of the reported high rate behaviors are achieved at a low mass loading(<3 mg cm^(-2)) of the electrodes. Herein, we propose an aqueous Na-ion battery which includes a Ni-based Prussian blue(NiHCF) cathode, a carbonyl-based organic compound, 5,7,12,14-pentacenetetrone(PT)anode and a “water-in-salt” electrolyte(17 mol kg^(-1)NaClO_(4)in water). Its operation involves the reversible coordination reaction of the PT anode and the extraction/insertion of Na;in the NiHCF cathode. It is demonstrated that the wide internal spaces of the PT anode and NiHCF cathode can not only buffer the volumetric change induced by Na;storage, but also enable fast kinetics. The full cell exhibits a supercapacitor-like rate performance of 50 A g^(-1)(corresponding to a discharge or charge within 6.3 s)and a super-long lifespan of 15,000 cycles. Moreover, the excellent rate performance can still be preserved even with a high mass loading of the electrodes(15 mgNiHCFcm^(-2)and 8 mgPTcm^(-2)).Especially, the cell can work well in a wide temperature range, from-40 to 100 °C, showing a typical all-climate operation. 展开更多
关键词 Aqueous Na-ion batteries All-climate Long lifespan “Water-in-salt”electrolyte
原文传递
Conductive Ni3(HITP)2 MOFs thin films for flexible transparent supercapacitors with high rate capability 被引量:4
11
作者 Weiwei Zhao Tiantian Chen +7 位作者 Weikang Wang Beibei Jin Jiali Peng Shuaihang Bi Mengyue Jiang Shujuan Liu Qiang Zhao Wei Huang 《Science Bulletin》 SCIE EI CAS CSCD 2020年第21期1803-1811,M0003,M0004,共11页
The flexible transparent supercapacitors have been considered as one of the key energy-storage components to power the smart portable electronic devices.However,it is still a challenge to explore flexible transparent ... The flexible transparent supercapacitors have been considered as one of the key energy-storage components to power the smart portable electronic devices.However,it is still a challenge to explore flexible transparent capacitive electrodes with high rate capability.Herein,conductive Ni3(HITP)2(HITP=2,3,6,7,10,11-hexaiminotriphenylene)thin films are adopted as capacitive electrodes in flexible transparent supercapacitors.The Ni3(HITP)2 electrode possesses the excellent optoelectronic property with optical transmittance(T)of 78.4%and sheet resistance(Rs)of 51.3Ωsq-1,remarkable areal capacitance(CA)of 1.63 mF cm^-2and highest scan rate up to 5000 mV s-1.The asymmetric Ni3(HITP)2//PEDOT:PSS supercapacitor(T=61%)yields a high CA of 1.06 mF cm^-2at 3μA cm-2,which maintains 77.4%as the current density increases by 50 folds.The remarkable rate capability is ascribed to the collaborative advantages of low diffusion resistance and high ion accessibility,resulting from the intrinsic conductivity,short oriented pores and large specific areas of Ni3(HITP)2 films. 展开更多
关键词 Conductive film Metal-organic frameworks Collaborative advantages Flexible transparent supercapacitors High rate capability
原文传递
Iron oxide encapsulated in nitrogen-rich carbon enabling high-performance lithium-ion capacitor 被引量:4
12
作者 Jinhua Zhou Shuchi Xu +9 位作者 Qi Kang Lu Ni Ningna Chen Xiaoge Li Chunliang Lu Xizhang Wang Luming Peng Xuefeng Guo Weiping Ding Wenhua Hou 《Science China Materials》 SCIE EI CSCD 2020年第11期2289-2302,共14页
Lithium-ion capacitors(LICs)could combine the virtues of high power capability of conventional supercapacitors and high energy density of lithium-ion batteries.However,the lack of high-performance electrode materials ... Lithium-ion capacitors(LICs)could combine the virtues of high power capability of conventional supercapacitors and high energy density of lithium-ion batteries.However,the lack of high-performance electrode materials and the kinetic imbalance between the positive and negative electrodes are the major challenge.In this study,Fe3O4 nanoparticles encapsulated in nitrogen-rich carbon(Fe3O4@NC)were prepared through a self-assembly of the colloidal Fe OOH with polyaniline(PANI)followed by pyrolysis.Due to the well-designed nanostructure,conductive nitrogen-rich carbon shells,abundant micropores and high specific surface area,Fe3O4@NC-700 delivers a high capacity,high rate capability and long cycling stability.Kinetic analyses of the redox reactions reveal the pseudocapacitive mechanism and the feasibility as negative material in LIC devices.A novel LIC was constructed with Fe3O4@NC-700 as the negative electrode and expanded graphene(EGN)as the positive electrode.The wellmatched two electrodes effectively alleviate the kinetic imbalance between the positive and negative electrodes.As a result,Fe3O4@NC-700//EGN LIC exhibits a wide operating voltage window,and thus achieves an ultrahigh energy density of 137.5 W h kg^-1.These results provide fundamental insights into the design of pseudocapacitive electrode and show future research directions towards the next generation energy storage devices. 展开更多
关键词 FE3O4 CARBON N doping expanded graphene lithium-ion capacitor
原文传递
Rare earth and transitional metal colloidal supercapacitors 被引量:12
13
作者 CHEN KunFeng XUE DongFeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第11期1768-1778,共11页
The search of electrode materials with high electrochemical activity is one of key solutions to actualize both high energy density and high power density in a supercapacitor. Recently, we have developed one novel kind... The search of electrode materials with high electrochemical activity is one of key solutions to actualize both high energy density and high power density in a supercapacitor. Recently, we have developed one novel kind of rare earth and transitional metal colloidal supercapacitors, which can deliver higher specific capacitance than electrical double-layer capacitors(EDLC) and traditional pseudocapacitors. The electrode materials in colloidal supercapacitors are in-situ formed electroactive colloids, which were transformed from commercial rare earth and transitional metal salts in alkaline electrolyte by chemical and electrochemical assisted coprecipitation. In these colloidal supercapacitors, multiple-electron Faradaic redox reactions can be utilized, which can deliver ultrahigh specific capacitance often larger than one-electron capacitance. Multiple-valence metal cations used in our designed colloidal supercapacitors mainly include Ce3+, Yb3+, Er3+, Fe3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Sn2+ and Sn4+. The colloidal supercapacitors can be served as the promising next-generation high performance supercapacitors. 展开更多
关键词 SUPERCAPACITOR colloidal electrode electroactive cation rare earth cation transitional metal cation
原文传递
A Li-rich layered-spinel cathode material for high capacity and high rate lithium-ion batteries fabricated via a gas-solid reaction 被引量:1
14
作者 Lingqun Xu Zhenhe Sun +6 位作者 Yu Zhu Yu Han Manman Wu Yanfeng Ma Yi Huang Hongtao Zhang Yongsheng Chen 《Science China Materials》 SCIE EI CSCD 2020年第12期2435-2442,共8页
Lithium-rich layered oxide(LLO)cathode materials have drawn extensive attention due to their ultrahigh specific capacity and energy density.However,their commercialization is still restricted by their low initial coul... Lithium-rich layered oxide(LLO)cathode materials have drawn extensive attention due to their ultrahigh specific capacity and energy density.However,their commercialization is still restricted by their low initial coulombic efficiency,slow intrinsic kinetics and structural instability.Herein,a facile surface treatment strategy via gaseous phosphine was designed to improve the rate performance and capacity stability of LLOs.During the solid-gas reaction,phosphine reacted with active oxygen at the surface of LLOs due to its reductivity,forming oxygen vacancies and spinel phase at the surface region.As a result,Li ion conductivity and structural stability were greatly enhanced.The phosphinetreated LLOs(LLO@P)showed a layered-spinel hybrid structure and delivered an outstanding rate performance of156.7 mA h g^-1 at 10 C and a high capacity retention of 74%after 300 cycles at 5 C. 展开更多
关键词 cathode materials Li-rich layered-spinel structure high rate performance PHOSPHINE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部