A surface photocatalysis-TPD apparatus devoted to studying kinetics and mechanism of pho- tocatalytic processes with various signal crystal surfaces has been constructed. Extremely high vacuum (-0.2 nPa) in the ioni...A surface photocatalysis-TPD apparatus devoted to studying kinetics and mechanism of pho- tocatalytic processes with various signal crystal surfaces has been constructed. Extremely high vacuum (-0.2 nPa) in the ionization region is obtained by using multiple ultrahigh vacuum pumps. Compared with similar instruments built previously by others~ the H2, CH4 background in the ionization region can be reduced by about two orders of magnitude, and other residual gases in the ionization region can be reduced by about an order of magnitude. Therefore, the signal-to-noise ratio for the temperature programmed desorption (TPD) and time of flight (TOF) spectra is substantially enhanced, making experimental studies of pho- tocatalytic processes on surfaces much easier. In this work, we describe the new apparatus in detail and present some preliminary studies on the photo-induced oxygen vacancy defects on TiO2(110) at 266 nm by using the TPD and TOF methods. Preliminary results suggest that the apparatus is a powerful tool for studying kinetics and mechanism of photochemical processes.展开更多
文摘A surface photocatalysis-TPD apparatus devoted to studying kinetics and mechanism of pho- tocatalytic processes with various signal crystal surfaces has been constructed. Extremely high vacuum (-0.2 nPa) in the ionization region is obtained by using multiple ultrahigh vacuum pumps. Compared with similar instruments built previously by others~ the H2, CH4 background in the ionization region can be reduced by about two orders of magnitude, and other residual gases in the ionization region can be reduced by about an order of magnitude. Therefore, the signal-to-noise ratio for the temperature programmed desorption (TPD) and time of flight (TOF) spectra is substantially enhanced, making experimental studies of pho- tocatalytic processes on surfaces much easier. In this work, we describe the new apparatus in detail and present some preliminary studies on the photo-induced oxygen vacancy defects on TiO2(110) at 266 nm by using the TPD and TOF methods. Preliminary results suggest that the apparatus is a powerful tool for studying kinetics and mechanism of photochemical processes.