The Al-Si alloy with high Si content was prepared by pressure infiltration. Microstructure observation shows that three-dimensional structure (3D-structure) is obtained from irregular sharp Si particles via high tem...The Al-Si alloy with high Si content was prepared by pressure infiltration. Microstructure observation shows that three-dimensional structure (3D-structure) is obtained from irregular sharp Si particles via high temperature diffusion treatment (HTDT). Flat Si-Al interfaces transform to smooth curves, and Si phases precipitate in Al and Si-Al interface. The bonding of Si-Al interface is improved by HTDT, which improves the mechanical performance of Al-Si alloy. The bending strength of 3D-Al-Si alloy increases by 6% compared with that of Al-Si alloy, but the elastic modulus changes a little. The coefficient of thermal expansion (CTE) of the 3D-Al-Si alloy is 7.7×10^-6/℃ from 20℃ to 100 ℃, which decreases by 7% compared with that of Al-Si alloy. However, HTDT has little effect on the thermal conductivity of Al-Si alloy.展开更多
基金Project(HITQNJS.2008.057) supported by Harbin Institute of Technology Education Foundation of DevelopmentProject(20092302120056) supported by Doctoral Fund of Ministry of Education of China Project(LBH-Z08160) supported by Heilongjiang Postdoctoral Grant
文摘The Al-Si alloy with high Si content was prepared by pressure infiltration. Microstructure observation shows that three-dimensional structure (3D-structure) is obtained from irregular sharp Si particles via high temperature diffusion treatment (HTDT). Flat Si-Al interfaces transform to smooth curves, and Si phases precipitate in Al and Si-Al interface. The bonding of Si-Al interface is improved by HTDT, which improves the mechanical performance of Al-Si alloy. The bending strength of 3D-Al-Si alloy increases by 6% compared with that of Al-Si alloy, but the elastic modulus changes a little. The coefficient of thermal expansion (CTE) of the 3D-Al-Si alloy is 7.7×10^-6/℃ from 20℃ to 100 ℃, which decreases by 7% compared with that of Al-Si alloy. However, HTDT has little effect on the thermal conductivity of Al-Si alloy.