Aim To research on a solid cemented carbide multi facet drill for drilling high strength steel. Methods Assimilating some features of multi facet drill edge structures, through systematic drilling experiments, a n...Aim To research on a solid cemented carbide multi facet drill for drilling high strength steel. Methods Assimilating some features of multi facet drill edge structures, through systematic drilling experiments, a new type of solid cemented carbide drill was developed and the drill geometry was optimized. Results With the new type drill,the drilling force decreases by 10%-20%, the drilling productivity (drilled holes per hour) increases by 2-3 times, and the drilling precision and surface finish increase by one level. Conclusion The new type drill possesses excellent drilling performance.展开更多
The engineblock production lines need high speed tapping with tungsten carbide taps. In the tapping process, the machining precision and the tool life of taps are directly influenced by tapping forces. And the paramet...The engineblock production lines need high speed tapping with tungsten carbide taps. In the tapping process, the machining precision and the tool life of taps are directly influenced by tapping forces. And the parameter optimization of tap structures is also correlated with the variation of tapping forces. Therefore, the study of tapping forces is necessary in developing new style taps. Several experiments about some novel carbide taps are performed on a vertical machining center by a Kistler dynamometer system in blind tapping both gray cast iron and ductile cast iron. And the variations of tapping forces are analyzed in tapping-in and tapping-out periods. It indicates that cutting forces hardly vary with the tap wear in tapping cast iron. Contrarily, tapping forces are closely correlated with the holding method. Besides, it also depends on the helix angle, the flute numbers and the plasticity of the work material to some extent.展开更多
The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation sp...The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation speed. Experimental results show that the spindle rotation speed is the most influential factor. The thrust andthe torque decrease under the condition of high rotation rate. With the decrease of the feed speed, the thrust and the torque decrease. But the effect of the feed speed is less than that of the spindle rotation rate. Moreover, the effect of drill materials on the thrust and the torque is more notable than that of the drill geometries and the feed speed. The thrust is greatly affected by the feed speed while the torque is obviously affected by drill geometries.展开更多
AIM: To investigate the inhibitory effect of natural taurine (NTau) on portal hypertension (PHT) in rats with experimentally-induced liver cirrhosis (LC). METHODS: Experimentally-induced LC Wistar rats (20 ra...AIM: To investigate the inhibitory effect of natural taurine (NTau) on portal hypertension (PHT) in rats with experimentally-induced liver cirrhosis (LC). METHODS: Experimentally-induced LC Wistar rats (20 rats/group) were treated with either oral saline or oral NTau for 6 consecutive weeks. Evaluation parameters included portal venous pressure (PVP), portal venous resistance (PVR), portal venous flow (PVF), splanchnic vascular resistance (SVR) and mean arterial pressure (NAP). Vasoactive substance levels including nitric oxide (NO), nitric oxide synthase (NOS) and cyclic guanosine monophosphate (cGMP) were also measured. Histological investigation of type Ⅰ and Ⅲ collagen (COL Ⅰ and Ⅲ) and transforming growth factor-β1 (TGF-β1) was also performed. RESULTS: Treatment with NTau (1) significantly decreased PVP, PVR and PVF, and increased MAP and SVP; (2) markedly increased the vascular compliance and reduced the zero-stress of the portal vein; (3) markedly decreased the amount of NO and cGMP and activity of NOS; and (4) improved the pathological status of the liver tissue and reduced the expression of COL Ⅰ, COL Ⅲ and TGF-β1. CONCLUSION: NTau inhibited the LC-induced PHT by improving hyperdynamic circulation, morphology of liver and biomechanical properties of the portal vein in experimentally-induced LC rats.展开更多
Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytica...Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytical force model to indicate the effect of coating material, cutting speed, feed rate on tool life and surface roughness was conducted experimentally. Cutting tests were performed using round inserts, with cutting speeds ranging from 50 to 300 rn/min, and feed rates from 0.1 to 0.4 mm/tooth, without using cooling liquids. The behavior of the TiN and TiCN layers using various cutting conditions was analyzed with orthogonal machining force model. Cutting results indicate that different coated tools, together with cutting variables, play a significant role in determining the machinability when milling Mar-M247.展开更多
Jadeite quartzite, essentially a two-phase rock made up of jadeite and quartz, is one of the most important UHP lithologies occur- ring in the Dabie Mountain ultrahigh pressure metamorphic belt and forms layers in bio...Jadeite quartzite, essentially a two-phase rock made up of jadeite and quartz, is one of the most important UHP lithologies occur- ring in the Dabie Mountain ultrahigh pressure metamorphic belt and forms layers in biotite-plagioclase gneiss. High pressure- high temperature studies on natural albite from the country rock gneiss were undertaken to reveal the--in parts----complex mineralogical changes that occur in the jadeite quartzite during prograde metamorphism. Experiments were conducted at 800- 1200~C, in the pressure range of 2.0-3.5 GPa. One of the most intriguing results shows that the low pressure boundary of the jadeite+coesite stability field is located between about 3.2 GPa at 1000~C and 3.4 GPa at 1200~C, thus about (0.2-0.3)_+0.1 GPa higher than the quartz-coesite transition curve, given the uncertainty in the present study. Minor amounts of sodium and aluminum entering the structure of quartz and the intimate intergrowth texture of the run products may contribute to the ob- served pressure shift. Combined petrological and mineralogical studies on the run products and the natural rocks yield the fol- lowing prograde reaction sequence to have occurred: The protolith of the jadeite- quartzite from Dabie Mountain is an albitized siltstone/greywacke characterized by an albite+quartz assemblage. During prograde metamorphism albite breaks down to form jadeite+quartz and thus at this stage two types of quartz can be distinguished whereas type-I-quartz already existed in the pro- tolith, type-II-quartz represents a newly formed reaction product of albite. During further P-T-increase the pure type- I-quartz was transformed to coesite, whereas type-II-quartz (together with jadeite) was still present as a stable phase because of its im- purities of Na and A1. At a later stage during further subduction, type-II-quartz also decomposes to form coesite. These studies represent an important puzzlement for a better understanding of the evolution of jadeite- quartzite from the Dabie Mountain during continental crust subduction and thus contribute to a more complete knowledge of the formation of the Dabie Mountain UHP orogenic belt in general.展开更多
文摘Aim To research on a solid cemented carbide multi facet drill for drilling high strength steel. Methods Assimilating some features of multi facet drill edge structures, through systematic drilling experiments, a new type of solid cemented carbide drill was developed and the drill geometry was optimized. Results With the new type drill,the drilling force decreases by 10%-20%, the drilling productivity (drilled holes per hour) increases by 2-3 times, and the drilling precision and surface finish increase by one level. Conclusion The new type drill possesses excellent drilling performance.
文摘The engineblock production lines need high speed tapping with tungsten carbide taps. In the tapping process, the machining precision and the tool life of taps are directly influenced by tapping forces. And the parameter optimization of tap structures is also correlated with the variation of tapping forces. Therefore, the study of tapping forces is necessary in developing new style taps. Several experiments about some novel carbide taps are performed on a vertical machining center by a Kistler dynamometer system in blind tapping both gray cast iron and ductile cast iron. And the variations of tapping forces are analyzed in tapping-in and tapping-out periods. It indicates that cutting forces hardly vary with the tap wear in tapping cast iron. Contrarily, tapping forces are closely correlated with the holding method. Besides, it also depends on the helix angle, the flute numbers and the plasticity of the work material to some extent.
文摘The thrust and the torque of various carbide drills are studied for the high-speed drilling of fiber reinforced epoxy composites. The orthogonal experiment is carried out with different feed speeds at high rotation speed. Experimental results show that the spindle rotation speed is the most influential factor. The thrust andthe torque decrease under the condition of high rotation rate. With the decrease of the feed speed, the thrust and the torque decrease. But the effect of the feed speed is less than that of the spindle rotation rate. Moreover, the effect of drill materials on the thrust and the torque is more notable than that of the drill geometries and the feed speed. The thrust is greatly affected by the feed speed while the torque is obviously affected by drill geometries.
基金Supported by The National Natural Science Foundation of China,Grant,No.30660235Guangxi Science Foundation forYouths,Grant,No.0728080National"11th 5-year"Support Plan of China,Grant,No.2006BAI0802-07
文摘AIM: To investigate the inhibitory effect of natural taurine (NTau) on portal hypertension (PHT) in rats with experimentally-induced liver cirrhosis (LC). METHODS: Experimentally-induced LC Wistar rats (20 rats/group) were treated with either oral saline or oral NTau for 6 consecutive weeks. Evaluation parameters included portal venous pressure (PVP), portal venous resistance (PVR), portal venous flow (PVF), splanchnic vascular resistance (SVR) and mean arterial pressure (NAP). Vasoactive substance levels including nitric oxide (NO), nitric oxide synthase (NOS) and cyclic guanosine monophosphate (cGMP) were also measured. Histological investigation of type Ⅰ and Ⅲ collagen (COL Ⅰ and Ⅲ) and transforming growth factor-β1 (TGF-β1) was also performed. RESULTS: Treatment with NTau (1) significantly decreased PVP, PVR and PVF, and increased MAP and SVP; (2) markedly increased the vascular compliance and reduced the zero-stress of the portal vein; (3) markedly decreased the amount of NO and cGMP and activity of NOS; and (4) improved the pathological status of the liver tissue and reduced the expression of COL Ⅰ, COL Ⅲ and TGF-β1. CONCLUSION: NTau inhibited the LC-induced PHT by improving hyperdynamic circulation, morphology of liver and biomechanical properties of the portal vein in experimentally-induced LC rats.
文摘Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytical force model to indicate the effect of coating material, cutting speed, feed rate on tool life and surface roughness was conducted experimentally. Cutting tests were performed using round inserts, with cutting speeds ranging from 50 to 300 rn/min, and feed rates from 0.1 to 0.4 mm/tooth, without using cooling liquids. The behavior of the TiN and TiCN layers using various cutting conditions was analyzed with orthogonal machining force model. Cutting results indicate that different coated tools, together with cutting variables, play a significant role in determining the machinability when milling Mar-M247.
基金supported by the Research Projects of China(Grants Nos.2009CB825003,41002068)the State Key Laboratory of GPMR(Grant No.MSF-GPMR 200911)China University of Geosciences(Grant No.CUGL090204)
文摘Jadeite quartzite, essentially a two-phase rock made up of jadeite and quartz, is one of the most important UHP lithologies occur- ring in the Dabie Mountain ultrahigh pressure metamorphic belt and forms layers in biotite-plagioclase gneiss. High pressure- high temperature studies on natural albite from the country rock gneiss were undertaken to reveal the--in parts----complex mineralogical changes that occur in the jadeite quartzite during prograde metamorphism. Experiments were conducted at 800- 1200~C, in the pressure range of 2.0-3.5 GPa. One of the most intriguing results shows that the low pressure boundary of the jadeite+coesite stability field is located between about 3.2 GPa at 1000~C and 3.4 GPa at 1200~C, thus about (0.2-0.3)_+0.1 GPa higher than the quartz-coesite transition curve, given the uncertainty in the present study. Minor amounts of sodium and aluminum entering the structure of quartz and the intimate intergrowth texture of the run products may contribute to the ob- served pressure shift. Combined petrological and mineralogical studies on the run products and the natural rocks yield the fol- lowing prograde reaction sequence to have occurred: The protolith of the jadeite- quartzite from Dabie Mountain is an albitized siltstone/greywacke characterized by an albite+quartz assemblage. During prograde metamorphism albite breaks down to form jadeite+quartz and thus at this stage two types of quartz can be distinguished whereas type-I-quartz already existed in the pro- tolith, type-II-quartz represents a newly formed reaction product of albite. During further P-T-increase the pure type- I-quartz was transformed to coesite, whereas type-II-quartz (together with jadeite) was still present as a stable phase because of its im- purities of Na and A1. At a later stage during further subduction, type-II-quartz also decomposes to form coesite. These studies represent an important puzzlement for a better understanding of the evolution of jadeite- quartzite from the Dabie Mountain during continental crust subduction and thus contribute to a more complete knowledge of the formation of the Dabie Mountain UHP orogenic belt in general.