The removal of phosphate from municipal sewage by high gradient magnetic separation using aluminium sulphate as precipitating agent and Fe3O4 as seeding material was studied. The effects of aluminium sulphate, Fe3O4, ...The removal of phosphate from municipal sewage by high gradient magnetic separation using aluminium sulphate as precipitating agent and Fe3O4 as seeding material was studied. The effects of aluminium sulphate, Fe3O4, magnetic field intensity, pH value and flow-rate of sewage on phosphorus removal rate were investigated. The results show that addition of 200 mg/L Al2(SO4)3·18H2O and 300 mg/L Fe3O4, magnetic field intensity of 200 kA/m, pH value of 4.57.0 and flow-rate of 6.15 cm/s are both efficient and economic technical parameters for removal of phosphate. The pH value has a tremendous effect on the removal of phosphate. In the pH range of (4.5)7.0, more than 95% phosphate can be removed. Theoretical analysis indicates that the solubility of AlPO4 is minimum at pH 4.07.0 and the electrostatic attractive force between AlPO4 and Fe3O4 is maximum at pH 4.5(6.5.)展开更多
A full-scale experimental study of treating mustard wastewater by the integrated bioreactor with designed scale of 1 000 m3/d is conducted combined with a demonstration project. The systematical researches on the effi...A full-scale experimental study of treating mustard wastewater by the integrated bioreactor with designed scale of 1 000 m3/d is conducted combined with a demonstration project. The systematical researches on the efficiency of combined operation conditions of anaerobic-aerobic and anaerobic-aerobic-flocculation as well as chemical phosphorus removal of hypersaline mustard wastewater are conducted. The optimal operation condition and parameters in pretreatment of mustard wastewater in winter (the water temperature ranges 8-15 ~C) are determined: the anaerobic load is 3.0 kg (COD)/(m3.d), the average COD and phosphate concentration of the inflow are respectively 3 883 mg/L and 35.53 mg/L and the dosage of flocculent (PAC) is 400 mg/L. The anaerobic-aerobic-flocculation combined operation condition and postpositive phosphorous removal with ferrous sulfate are employed. After treatment, the COD of the effluent is 470 mg/L and the average phosphate concentration is 5.09 mg/L. The effluent could achieve the third-level of Integrated Wastewater Discharge Standard (GB 8978--1996).展开更多
文摘The removal of phosphate from municipal sewage by high gradient magnetic separation using aluminium sulphate as precipitating agent and Fe3O4 as seeding material was studied. The effects of aluminium sulphate, Fe3O4, magnetic field intensity, pH value and flow-rate of sewage on phosphorus removal rate were investigated. The results show that addition of 200 mg/L Al2(SO4)3·18H2O and 300 mg/L Fe3O4, magnetic field intensity of 200 kA/m, pH value of 4.57.0 and flow-rate of 6.15 cm/s are both efficient and economic technical parameters for removal of phosphate. The pH value has a tremendous effect on the removal of phosphate. In the pH range of (4.5)7.0, more than 95% phosphate can be removed. Theoretical analysis indicates that the solubility of AlPO4 is minimum at pH 4.07.0 and the electrostatic attractive force between AlPO4 and Fe3O4 is maximum at pH 4.5(6.5.)
基金Project(20090191120036) supported by the Fund of Doctoral Program of Ministry of Education,China
文摘A full-scale experimental study of treating mustard wastewater by the integrated bioreactor with designed scale of 1 000 m3/d is conducted combined with a demonstration project. The systematical researches on the efficiency of combined operation conditions of anaerobic-aerobic and anaerobic-aerobic-flocculation as well as chemical phosphorus removal of hypersaline mustard wastewater are conducted. The optimal operation condition and parameters in pretreatment of mustard wastewater in winter (the water temperature ranges 8-15 ~C) are determined: the anaerobic load is 3.0 kg (COD)/(m3.d), the average COD and phosphate concentration of the inflow are respectively 3 883 mg/L and 35.53 mg/L and the dosage of flocculent (PAC) is 400 mg/L. The anaerobic-aerobic-flocculation combined operation condition and postpositive phosphorous removal with ferrous sulfate are employed. After treatment, the COD of the effluent is 470 mg/L and the average phosphate concentration is 5.09 mg/L. The effluent could achieve the third-level of Integrated Wastewater Discharge Standard (GB 8978--1996).