Resulting from the collision of the Eurasian and Indian plates, the Qinghai-Tibetan Plateau is commonly known as the 'roof of the world'. Collectively the Yarlung Tsangpo, Nu, Laneang, Yangtze, Yalong, and Yellow Ri...Resulting from the collision of the Eurasian and Indian plates, the Qinghai-Tibetan Plateau is commonly known as the 'roof of the world'. Collectively the Yarlung Tsangpo, Nu, Laneang, Yangtze, Yalong, and Yellow River basins drain the eastern margin of the plateau. In this paper, we utilize Shuttle Radar Topography Mission elevation data to examine morphometric and relief attributes of these basins to reveal insights rates of incision. A robust into tectonic activity and technique using Maflab is proposed to alleviate errors associated with SRTM data in the derivation of river longitudinal profiles. Convex longitudinal profiles are interpreted to be a product of uplift rates that exceed rates of channel incision along the entire margin of the Qinghai- Tibetan Plateau. Highest relief towards the south reflects extensive fluvial incision. High relief is also prominent along major active faults. Erosion patterns are related to distance from knickpoints. Highest rates of erosion and incision are evident towards the south, with decreasing values towards the north, suggesting a link between tectonic activity and erosion.展开更多
基金Funding was provided by International Science&Technology Cooperation Program of China(Grant Nos.2011DFG93160,2011DFA20820)
文摘Resulting from the collision of the Eurasian and Indian plates, the Qinghai-Tibetan Plateau is commonly known as the 'roof of the world'. Collectively the Yarlung Tsangpo, Nu, Laneang, Yangtze, Yalong, and Yellow River basins drain the eastern margin of the plateau. In this paper, we utilize Shuttle Radar Topography Mission elevation data to examine morphometric and relief attributes of these basins to reveal insights rates of incision. A robust into tectonic activity and technique using Maflab is proposed to alleviate errors associated with SRTM data in the derivation of river longitudinal profiles. Convex longitudinal profiles are interpreted to be a product of uplift rates that exceed rates of channel incision along the entire margin of the Qinghai- Tibetan Plateau. Highest relief towards the south reflects extensive fluvial incision. High relief is also prominent along major active faults. Erosion patterns are related to distance from knickpoints. Highest rates of erosion and incision are evident towards the south, with decreasing values towards the north, suggesting a link between tectonic activity and erosion.