A series of experiments and numerical simulations are carried out in a high-speed axial compressor to systematically investigate the influence and underlying flow mechanisms of micro tip injection on enhancing compres...A series of experiments and numerical simulations are carried out in a high-speed axial compressor to systematically investigate the influence and underlying flow mechanisms of micro tip injection on enhancing compressor stability.Different geometric structures of micro tip injection have been investigated,including the axial positions of injector port,injected mass flow rate and injector diameter.First,seven designed micro tip injection structures and one solid wall casing are tested in the compressor test rig to elucidate the influence of different micro tip injection parameters on the compressor stability.Then,numerical simulations are conducted to analyze the underlying flow mechanisms of micro tip injection with different design parameters on enhancing the compressor stability.The experimental and numerical investigation reveal that when the injection port is located upstream of the low-speed region,the compressor stability is significantly enhanced.The tip injection with larger injected mass flow can obtain higher stall margin improvement.Smaller injector diameter produces higher injection momentum and velocity,contributing to greater improvement on the compressor stability.展开更多
High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution fl...High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed.展开更多
The structures and electrochemical properties of the Ti1.4V0.6Ni ribbon before and after heat treatment are investigated systematically. The structure of the sample is characterized by X-ray powder diffraction analysi...The structures and electrochemical properties of the Ti1.4V0.6Ni ribbon before and after heat treatment are investigated systematically. The structure of the sample is characterized by X-ray powder diffraction analysis. Electrochemical properties including the discharge capacity, the cyclic stability and the high-rate discharge ability are tested. X-ray powder diffraction analysis shows that after heat treatment at 590 °C for 30 min, all samples mainly consist of the icosahedral quasicrystal phase (I-phase), Ti2Ni phase (FCC), V-based solid solution phase (BCC) and C14 Laves phase (hexagonal). Electrochemical measurements show that the maximum discharge capacity of the alloy electrode after heat treatment is 330.9 mA?h/g under the conditions that the discharge current density is 30 mA/g and the temperature is 30 °C. The result indicates that the cyclic stability and the high-rate discharge ability are all improved. In addition, the electrochemical kinetics of the alloy electrode is also studied by electrochemical impedance spectroscopy (EIS) and hydrogen diffusion coefficient (D).展开更多
To discuss the pavement performance of basalt fiber-modified asphalt mixtures,the optimum dosages of asphalt and fibers are studied by the Marshall test and the rutting test.The results demonstrate that the optimum do...To discuss the pavement performance of basalt fiber-modified asphalt mixtures,the optimum dosages of asphalt and fibers are studied by the Marshall test and the rutting test.The results demonstrate that the optimum dosages of asphalt and fibers are 4.63% and 0.3%,respectively.Then the pavement performances of basalt(polyester,xylogen)fiber-modified asphalt mixtures are investigated through high temperature stability tests,water stability tests and low temperature crack resistance tests.It indicates that the pavement performances of the fiber-modified asphalt mixtures such as rutting dynamic stability,freezing splitting tensile strength,low temperature crack resistance and so on are improved compared with control asphalt mixture.The results show that the pavement performances of asphalt mixtures can be improved by fiber-modifiers.Besides,the improvement effects of basalt fiber are superior to polyester fiber and xylogen fiber.展开更多
Aim In the present study a RP-HPLC method was developed and validated toinvestigate the stability of baicalin aqueous solution. Methods The influences of temperature and pHon the stability of baicalin aqueous solution...Aim In the present study a RP-HPLC method was developed and validated toinvestigate the stability of baicalin aqueous solution. Methods The influences of temperature and pHon the stability of baicalin aqueous solution were investigated by classic homoiothermicacceleration test, and the pH for the most stable solution was determined. Results The time whenbaicalin suffered 10% loss was found to be 18.1 h, and the degradation activation energy of baicalinwas 79.1 kJ·moL^(-1) . The pH at which baicalin is most stable is 4.28. Conclusion The temperatureshould be kept at a lower level and the pH should be adjusted to near that for the most stablesolution in the production of baicalin preparations.展开更多
Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weas...Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weasel,steppe polecat and upland buzzard of carnivores as food respectively;adult passerine birds contributed 22.3%,47.7% and 69.1%,with hatchlings contributing 50.9%,25.6% and 1.70% to each respectively.δ 13 C values plotted against δ 15 N indicated significant partitioning in two-dimensional space among the three carnivores.It was reasonable to propose a food resource partitioning among alpine weasel,steppe polecat and upland buzzard,which partially revealed their co-existence mechanisms.展开更多
This paper presents an integrated investigation of the ground stability of a deep gateroad with a 1 km burial depth based on a field test, case studies, and numerical modelling. In situ stress measurements and mechani...This paper presents an integrated investigation of the ground stability of a deep gateroad with a 1 km burial depth based on a field test, case studies, and numerical modelling. In situ stress measurements and mechanical properties tests were first conducted in the test site. Then, the deformation behavior, stress and yield zone distributions, as well as the bolts load of the gateroad, were simulated using FLAC3D software. The model results demonstrated that the soft rock properties and high in situ stress were the main factors for the deep gateroad instability, and the shear slip failure induced by the high stress was the primary failure model for the deep rock mass. In addition, the unsuitable support patterns, especially the relatively short bolts/cables with low pre-tensions, the lack of high-strengthen secondary supports and the unsupported floor strata, also contributed to the gateroad instability. Subsequently, a new combined supporting strategy, incorporating longer bolts/cables, yielding ring supports, and grouting measures, was proposed for the deep gateroad, and its validity was verified via field monitoring. All these could be a reference for understanding the failure mechanism of the gateroad with 1 km burial depth.展开更多
AIM: To study the stability of portal hypertension (PHT) caused by partial ligation of the portal vein ligation (PVL) in a rat model.METHODS: Thirty male adult Wistar rats were divided into two groups: 10 in Gr...AIM: To study the stability of portal hypertension (PHT) caused by partial ligation of the portal vein ligation (PVL) in a rat model.METHODS: Thirty male adult Wistar rats were divided into two groups: 10 in Group Ⅰ received a sham operation; and 20 in Group Ⅱreceived partial PVL. Portal vein pressure (PVP) was measured at four time periods: before ligation, 2 wk, 6 wk and 10 wk postsurgery. Portal venography, blood sampling and liver and spleen pathological examinations were conducted at 10 wk after surgery.RESULTS: The PVP was 9.15± 0.58 cmH2O before ligation, and increased to 17.32 ±0.63 cmH2O 2 wk after PVL. By repeat measurement of the PVP in each rat, it was shown to remain elevated for 10 wk. There were no significant differences in the pressure measurements at 2 wk, 6 wk and 10 wk. Varices were found mainly in the mesenteric vein 2 wk after PVL, which were more obvious later, while these manifestations were similar at week 6 and week 10. Portal venography demonstrated the varices and collaterals. There was no significant change in liver pathology. The volume of the spleen was enlarged 2-fold after ligation, and the sinus of the spleen was enlarged due to congestion. Significant sinus endothelial cell proliferation was observed, but no evidence of hypersplenia was found on hemogram and biochemical examination.CONCLUSION: These findings suggest that a satisfactory prehepatic PHT rat model can be obtained by partial ligation of the portal vein, and this PHT rat model was stable for at least 10 wk.展开更多
The asymmetric photocatalytic organic synthesis(APOS)process is a sustainable and environmentally benign method for the production of optically active chemicals with sunlight as an energy source.However,it still lacks...The asymmetric photocatalytic organic synthesis(APOS)process is a sustainable and environmentally benign method for the production of optically active chemicals with sunlight as an energy source.However,it still lacks efficient semiconductors with tunable band structures and has a low recycling stability.Herein,we report the synthesis of tetrahydroquinoline-linked covalent organic frameworks(QH-COFs)with irreversible tetrahydroquinoline linkage as efficient semiconductors for the visible-light-driven asymmetricα-alkylation of aldehydes by merging with a chiral secondary amine.Up to 94%ee was obtained over QH-COFs,and the activity of QH-COFs was significantly higher than those of inorganic semiconductors(e.g.,Ti O2,Bi VO4,and WO3)under similar conditions,which is mainly attributed to their narrow band gap and suitable band edge.As far as we know,QH-COFs are the most active semiconductors for asymmetricα-alkylation of aldehydes ever reported.The QH-COFs were prepared via a one-pot Povarov cascade imine formation and cycloaddition reaction using Sc(OTf)3/Yb(OTf)3 as Lewis acid catalysts.Attributed to the tetrahydroquinoline linkage,QH-COFs showed extremely high recycling stability,which made practicals application possible.This work not only opens up a new avenue for asymmetric photocatalysis but also provides an efficient and general method for the construction of robust COFs.展开更多
Objective: To elucidate the role of the autonomic nervous system (ANS) in acute mountain sickness (AMS) during the initial phase at acute high-altitude exposure. Methods: Ninety-nine healthy sea-level residents rapidl...Objective: To elucidate the role of the autonomic nervous system (ANS) in acute mountain sickness (AMS) during the initial phase at acute high-altitude exposure. Methods: Ninety-nine healthy sea-level residents rapidly ascended to Tibet plateau (3 675 m altitude) by airplane from Chengdu plain (560 m altitude). ANS function was tested in plain and day 2–4 in Tibet by heart rate variability (HRV), cold pressor test (CPT). AMS was evaluated by clinic symptomatic scores. All subjects were divided into non-AMS group (57, scores≤4) and AMS group (42, scores>4). Results: Compared with non-AMS group, AMS group had higher standard deviation of normal to normal intervals (SDNN), root mean square of delta RR (rMSSD), low-frequency (LF) power, and normalized low-frequency (LFnu) power in plain (P<0.05). After arrival at 3 675 m altitude, AMS group had greater reduction in percentage of delta RR>50 ms(PNN50), rMSSD (P<0.01) and SDNN, LF, total power (TP) (P<0.05). Although no significant differences in the increase of SP and DP during CPT were found between 2 groups in plain, the SP increase during CPT of AMS group was less than non-AMS group (P<0.05) at 3 675 m altitude. AMS symptomatic scores was not only positively correlated with SDNN, rMSSD, LF/HF in plain (P<0.05), but also negatively correlated with HFnu in plain (P<0.05). Conclusion: During the initial high altitude exposure, ANS modulation is generally blunted, but the relatively predominant sympathetic control is enhanced, and this characteristic change of ANS function is positively correlated with the development of AMS.展开更多
Mesoporous titanium silicalite-1(TS-1)was hydrothermally synthesized with the addition of triethanolamine(TEA)in the conventional process, and used in the cyclohexanone ammoximation in a continuous slurry reactor. The...Mesoporous titanium silicalite-1(TS-1)was hydrothermally synthesized with the addition of triethanolamine(TEA)in the conventional process, and used in the cyclohexanone ammoximation in a continuous slurry reactor. The as-prepared TS-1 was characterized with X-ray diffraction(XRD), scanning electron microcopy(SEM), N_2 adsorption-desorption, Fourier transform infrared(FT-IR)spectroscopy, UV-Visible(UV-Vis)diffuse reflectance spectra and UV Raman spectroscopy. The results indicated that the addition of TEA resulted in the formation of mesopores and the slight increase of framework titanium in TS-1. TS-1 synthesized with the addition of TEA exhibited a higher stability in the cyclohexanone ammoximation than that without the addition of TEA, attributing to the increase of mesopore volumes and the slight increase of the framework titanium in TS-1. However, when the addition of TEA was up to TEA/SiO_2 ratio of 0.24, the crystallinity and framework titanium of TS-1 decreased markedly, and the average crystal sizes of TS-1 increased, with the catalyst stability becoming poor.展开更多
[Objective] This study was conducted to select new hybrids with good ex- tension prospect, and to comprehensive assess various varieties and combinations from yielding ability, yield stability and adaptability. [Metho...[Objective] This study was conducted to select new hybrids with good ex- tension prospect, and to comprehensive assess various varieties and combinations from yielding ability, yield stability and adaptability. [Method] The yielding ability and yield stability of 5 varieties and 2 pioneer combinations in 5 test locations in Jiang- su Province in 2013-2015 were analyzed comprehensively. [Result] The environment effects and genotype x environment interaction effects of various tested varieties differed very significantly. It could be seen from various test locations that Mingyu 1301 and Sushi 51417 had very good yielding ability and yield stability, and were comprehensively assessed to be very good, Suyu 41 had very good yield stability and better yielding ability, and was comprehensively assessed to be good, while Suyu 29 and Suyu 39 showed instable yields in various locations and were greatly affected by environment, and thus should be planted in carefully-selected areas in extension. [Conclusion] This study provides theoretical foundation for breeding and extension of new varieties.展开更多
In this paper, we briefly introduce the history of the Defense Advanced Research Projects Agency(DARPA) Grand Challenge programs with particular focus on the 2012 Robotics Challenge. As members of team DRC-HUBO, we pr...In this paper, we briefly introduce the history of the Defense Advanced Research Projects Agency(DARPA) Grand Challenge programs with particular focus on the 2012 Robotics Challenge. As members of team DRC-HUBO, we propose different approaches for the Rough-Terrain task, such as enlarged foot pedals and a transformation into quadruped walking. We also introduce a new gait for humanoid robot locomotion to improve stability performance, called the Ski-Type gait. We analyze the stability performance of this gait and use the stability margin to choose between two candidate step sequences, Crawl-1 and Crawl-2. Next, we perform a force/torque analysis for the redundant closedchain system in the Ski-Type gait, and determine the joint torques by minimizing the total energy consumption. Based on the stability and force/torque analysis, we design a cane length to support a feasible and stable Crawl-2 gait on the HUBO2 humanoid robot platform. Finally, we compare our experimental results with biped walking to validate the SkiType gait. We also present our team performance in the trials of the Robotics Challenge.展开更多
A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear t...A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear theory, the critical behaviors and the forming mechanism of pillar instability were discussed by external disturbance , such as stresses waves by blasting , axial force eccentricity ratherish and imperfections in pillar. The results show that the micro-disturbances attenuate with time and they are independence each other when pillar is in the stability state. Their effects on the stability of system are inessential. The correlation degree of disturbances increases sharply and various micro-disturbances are relative and nested reciprocally when the system is in critical state and they also cooperate with each other, which induces system to reach a new state.展开更多
An image trust root is a special type of soft trust root for trusted computing. However,image trust root generation is difficult,as it needs a corresponding stable logic feature generation model and algorithm for dyna...An image trust root is a special type of soft trust root for trusted computing. However,image trust root generation is difficult,as it needs a corresponding stable logic feature generation model and algorithm for dynamical and sustained authentication. This paper proposes a basic function of constructing new scale-spaces with deep detecting ability and high stability for image features aimed at image root generation. According to the heat distribution and spreading principle of various kinds of infinitesimal heat sources in the space medium,a multi-embed nonlinear diffusion equation that corresponds to the multi-embed nonlinear scale-space is proposed,a HARRIS-HESSIAN scale-space evaluation operator that aims at the structure acceleration characteristics of a local region and can make use of image pixels' relative spreading movement principle was constructed,then a single-parameter global symmetric proportion(SPGSP) operator was also constructed. An authentication test with 3000 to 5000 cloud entities shows the new scale-space can work well and is stable,when the whole cloud has 5%-50% behavior with un-trusted entities. Consequently,it can be used as the corresponding stable logic feature generation model and algorithm for all kinds of images,and logic relationships among image features for trust roots.展开更多
基金supported by National Natural Science Foundation of China(No.52076179)National Science and Technology Major Projects of China(No.J2019-I-0011).
文摘A series of experiments and numerical simulations are carried out in a high-speed axial compressor to systematically investigate the influence and underlying flow mechanisms of micro tip injection on enhancing compressor stability.Different geometric structures of micro tip injection have been investigated,including the axial positions of injector port,injected mass flow rate and injector diameter.First,seven designed micro tip injection structures and one solid wall casing are tested in the compressor test rig to elucidate the influence of different micro tip injection parameters on the compressor stability.Then,numerical simulations are conducted to analyze the underlying flow mechanisms of micro tip injection with different design parameters on enhancing the compressor stability.The experimental and numerical investigation reveal that when the injection port is located upstream of the low-speed region,the compressor stability is significantly enhanced.The tip injection with larger injected mass flow can obtain higher stall margin improvement.Smaller injector diameter produces higher injection momentum and velocity,contributing to greater improvement on the compressor stability.
基金National Natural Science Foundation of China(1180500311947102+4 种基金12004005)Natural Science Foundation of Anhui Province(2008085MA162008085QA26)University Synergy Innovation Program of Anhui Province(GXXT-2022-039)State Key Laboratory of Advanced Electromagnetic Technology(Grant No.AET 2024KF006)。
文摘High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed.
基金Project (20112216120001) supported by the Doctoral Program of Tertiary Education of the Ministry of Education of ChinaProject(21215141) supported by the Natural Science Foundation of Jilin Province, China+3 种基金Project (20921002) supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of ChinaProjects (21073179, 61106050) supported by the National Natural Science Foundation of ChinaProject (BE2012047) supported by Scientific and Technological Supporting Program of Jiangsu Province of China and GS Yuasa Corporation of JapanProject (11KZ38) supported by and Scientific and Technological Pillar Project of Changchun, China
文摘The structures and electrochemical properties of the Ti1.4V0.6Ni ribbon before and after heat treatment are investigated systematically. The structure of the sample is characterized by X-ray powder diffraction analysis. Electrochemical properties including the discharge capacity, the cyclic stability and the high-rate discharge ability are tested. X-ray powder diffraction analysis shows that after heat treatment at 590 °C for 30 min, all samples mainly consist of the icosahedral quasicrystal phase (I-phase), Ti2Ni phase (FCC), V-based solid solution phase (BCC) and C14 Laves phase (hexagonal). Electrochemical measurements show that the maximum discharge capacity of the alloy electrode after heat treatment is 330.9 mA?h/g under the conditions that the discharge current density is 30 mA/g and the temperature is 30 °C. The result indicates that the cyclic stability and the high-rate discharge ability are all improved. In addition, the electrochemical kinetics of the alloy electrode is also studied by electrochemical impedance spectroscopy (EIS) and hydrogen diffusion coefficient (D).
文摘To discuss the pavement performance of basalt fiber-modified asphalt mixtures,the optimum dosages of asphalt and fibers are studied by the Marshall test and the rutting test.The results demonstrate that the optimum dosages of asphalt and fibers are 4.63% and 0.3%,respectively.Then the pavement performances of basalt(polyester,xylogen)fiber-modified asphalt mixtures are investigated through high temperature stability tests,water stability tests and low temperature crack resistance tests.It indicates that the pavement performances of the fiber-modified asphalt mixtures such as rutting dynamic stability,freezing splitting tensile strength,low temperature crack resistance and so on are improved compared with control asphalt mixture.The results show that the pavement performances of asphalt mixtures can be improved by fiber-modifiers.Besides,the improvement effects of basalt fiber are superior to polyester fiber and xylogen fiber.
文摘Aim In the present study a RP-HPLC method was developed and validated toinvestigate the stability of baicalin aqueous solution. Methods The influences of temperature and pHon the stability of baicalin aqueous solution were investigated by classic homoiothermicacceleration test, and the pH for the most stable solution was determined. Results The time whenbaicalin suffered 10% loss was found to be 18.1 h, and the degradation activation energy of baicalinwas 79.1 kJ·moL^(-1) . The pH at which baicalin is most stable is 4.28. Conclusion The temperatureshould be kept at a lower level and the pH should be adjusted to near that for the most stablesolution in the production of baicalin preparations.
文摘Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weasel,steppe polecat and upland buzzard of carnivores as food respectively;adult passerine birds contributed 22.3%,47.7% and 69.1%,with hatchlings contributing 50.9%,25.6% and 1.70% to each respectively.δ 13 C values plotted against δ 15 N indicated significant partitioning in two-dimensional space among the three carnivores.It was reasonable to propose a food resource partitioning among alpine weasel,steppe polecat and upland buzzard,which partially revealed their co-existence mechanisms.
基金Project(2017RCJJ011) supported by the Scientific Research Foundation of Shaaadong University of Science and Technology for Recruited Talents, China Projects(01CK03203, 02CK02302) supported by the Shaaadong Provincial First-Class Discipline Fundamental, China Proj ect(ZR2018QEE001) supported by the Natural Science Foundation of Shandong Province, China
文摘This paper presents an integrated investigation of the ground stability of a deep gateroad with a 1 km burial depth based on a field test, case studies, and numerical modelling. In situ stress measurements and mechanical properties tests were first conducted in the test site. Then, the deformation behavior, stress and yield zone distributions, as well as the bolts load of the gateroad, were simulated using FLAC3D software. The model results demonstrated that the soft rock properties and high in situ stress were the main factors for the deep gateroad instability, and the shear slip failure induced by the high stress was the primary failure model for the deep rock mass. In addition, the unsuitable support patterns, especially the relatively short bolts/cables with low pre-tensions, the lack of high-strengthen secondary supports and the unsupported floor strata, also contributed to the gateroad instability. Subsequently, a new combined supporting strategy, incorporating longer bolts/cables, yielding ring supports, and grouting measures, was proposed for the deep gateroad, and its validity was verified via field monitoring. All these could be a reference for understanding the failure mechanism of the gateroad with 1 km burial depth.
基金Supported by National 10th 5-year Science Research Plan of China,No.2001BA705B10-15
文摘AIM: To study the stability of portal hypertension (PHT) caused by partial ligation of the portal vein ligation (PVL) in a rat model.METHODS: Thirty male adult Wistar rats were divided into two groups: 10 in Group Ⅰ received a sham operation; and 20 in Group Ⅱreceived partial PVL. Portal vein pressure (PVP) was measured at four time periods: before ligation, 2 wk, 6 wk and 10 wk postsurgery. Portal venography, blood sampling and liver and spleen pathological examinations were conducted at 10 wk after surgery.RESULTS: The PVP was 9.15± 0.58 cmH2O before ligation, and increased to 17.32 ±0.63 cmH2O 2 wk after PVL. By repeat measurement of the PVP in each rat, it was shown to remain elevated for 10 wk. There were no significant differences in the pressure measurements at 2 wk, 6 wk and 10 wk. Varices were found mainly in the mesenteric vein 2 wk after PVL, which were more obvious later, while these manifestations were similar at week 6 and week 10. Portal venography demonstrated the varices and collaterals. There was no significant change in liver pathology. The volume of the spleen was enlarged 2-fold after ligation, and the sinus of the spleen was enlarged due to congestion. Significant sinus endothelial cell proliferation was observed, but no evidence of hypersplenia was found on hemogram and biochemical examination.CONCLUSION: These findings suggest that a satisfactory prehepatic PHT rat model can be obtained by partial ligation of the portal vein, and this PHT rat model was stable for at least 10 wk.
文摘The asymmetric photocatalytic organic synthesis(APOS)process is a sustainable and environmentally benign method for the production of optically active chemicals with sunlight as an energy source.However,it still lacks efficient semiconductors with tunable band structures and has a low recycling stability.Herein,we report the synthesis of tetrahydroquinoline-linked covalent organic frameworks(QH-COFs)with irreversible tetrahydroquinoline linkage as efficient semiconductors for the visible-light-driven asymmetricα-alkylation of aldehydes by merging with a chiral secondary amine.Up to 94%ee was obtained over QH-COFs,and the activity of QH-COFs was significantly higher than those of inorganic semiconductors(e.g.,Ti O2,Bi VO4,and WO3)under similar conditions,which is mainly attributed to their narrow band gap and suitable band edge.As far as we know,QH-COFs are the most active semiconductors for asymmetricα-alkylation of aldehydes ever reported.The QH-COFs were prepared via a one-pot Povarov cascade imine formation and cycloaddition reaction using Sc(OTf)3/Yb(OTf)3 as Lewis acid catalysts.Attributed to the tetrahydroquinoline linkage,QH-COFs showed extremely high recycling stability,which made practicals application possible.This work not only opens up a new avenue for asymmetric photocatalysis but also provides an efficient and general method for the construction of robust COFs.
文摘Objective: To elucidate the role of the autonomic nervous system (ANS) in acute mountain sickness (AMS) during the initial phase at acute high-altitude exposure. Methods: Ninety-nine healthy sea-level residents rapidly ascended to Tibet plateau (3 675 m altitude) by airplane from Chengdu plain (560 m altitude). ANS function was tested in plain and day 2–4 in Tibet by heart rate variability (HRV), cold pressor test (CPT). AMS was evaluated by clinic symptomatic scores. All subjects were divided into non-AMS group (57, scores≤4) and AMS group (42, scores>4). Results: Compared with non-AMS group, AMS group had higher standard deviation of normal to normal intervals (SDNN), root mean square of delta RR (rMSSD), low-frequency (LF) power, and normalized low-frequency (LFnu) power in plain (P<0.05). After arrival at 3 675 m altitude, AMS group had greater reduction in percentage of delta RR>50 ms(PNN50), rMSSD (P<0.01) and SDNN, LF, total power (TP) (P<0.05). Although no significant differences in the increase of SP and DP during CPT were found between 2 groups in plain, the SP increase during CPT of AMS group was less than non-AMS group (P<0.05) at 3 675 m altitude. AMS symptomatic scores was not only positively correlated with SDNN, rMSSD, LF/HF in plain (P<0.05), but also negatively correlated with HFnu in plain (P<0.05). Conclusion: During the initial high altitude exposure, ANS modulation is generally blunted, but the relatively predominant sympathetic control is enhanced, and this characteristic change of ANS function is positively correlated with the development of AMS.
基金Supported by the National Natural Science Foundation of China(No.21276183)
文摘Mesoporous titanium silicalite-1(TS-1)was hydrothermally synthesized with the addition of triethanolamine(TEA)in the conventional process, and used in the cyclohexanone ammoximation in a continuous slurry reactor. The as-prepared TS-1 was characterized with X-ray diffraction(XRD), scanning electron microcopy(SEM), N_2 adsorption-desorption, Fourier transform infrared(FT-IR)spectroscopy, UV-Visible(UV-Vis)diffuse reflectance spectra and UV Raman spectroscopy. The results indicated that the addition of TEA resulted in the formation of mesopores and the slight increase of framework titanium in TS-1. TS-1 synthesized with the addition of TEA exhibited a higher stability in the cyclohexanone ammoximation than that without the addition of TEA, attributing to the increase of mesopore volumes and the slight increase of the framework titanium in TS-1. However, when the addition of TEA was up to TEA/SiO_2 ratio of 0.24, the crystallinity and framework titanium of TS-1 decreased markedly, and the average crystal sizes of TS-1 increased, with the catalyst stability becoming poor.
基金Supported by Earmarked Fund for China Agriculture Research System(CARS-02-50)Jiangsu Agricultural Science and Technology Independent Innovation Fund(CX(14)2006)Jiangsu Science and Technology Support Program(BE2013434)~~
文摘[Objective] This study was conducted to select new hybrids with good ex- tension prospect, and to comprehensive assess various varieties and combinations from yielding ability, yield stability and adaptability. [Method] The yielding ability and yield stability of 5 varieties and 2 pioneer combinations in 5 test locations in Jiang- su Province in 2013-2015 were analyzed comprehensively. [Result] The environment effects and genotype x environment interaction effects of various tested varieties differed very significantly. It could be seen from various test locations that Mingyu 1301 and Sushi 51417 had very good yielding ability and yield stability, and were comprehensively assessed to be very good, Suyu 41 had very good yield stability and better yielding ability, and was comprehensively assessed to be good, while Suyu 29 and Suyu 39 showed instable yields in various locations and were greatly affected by environment, and thus should be planted in carefully-selected areas in extension. [Conclusion] This study provides theoretical foundation for breeding and extension of new varieties.
文摘In this paper, we briefly introduce the history of the Defense Advanced Research Projects Agency(DARPA) Grand Challenge programs with particular focus on the 2012 Robotics Challenge. As members of team DRC-HUBO, we propose different approaches for the Rough-Terrain task, such as enlarged foot pedals and a transformation into quadruped walking. We also introduce a new gait for humanoid robot locomotion to improve stability performance, called the Ski-Type gait. We analyze the stability performance of this gait and use the stability margin to choose between two candidate step sequences, Crawl-1 and Crawl-2. Next, we perform a force/torque analysis for the redundant closedchain system in the Ski-Type gait, and determine the joint torques by minimizing the total energy consumption. Based on the stability and force/torque analysis, we design a cane length to support a feasible and stable Crawl-2 gait on the HUBO2 humanoid robot platform. Finally, we compare our experimental results with biped walking to validate the SkiType gait. We also present our team performance in the trials of the Robotics Challenge.
文摘A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear theory, the critical behaviors and the forming mechanism of pillar instability were discussed by external disturbance , such as stresses waves by blasting , axial force eccentricity ratherish and imperfections in pillar. The results show that the micro-disturbances attenuate with time and they are independence each other when pillar is in the stability state. Their effects on the stability of system are inessential. The correlation degree of disturbances increases sharply and various micro-disturbances are relative and nested reciprocally when the system is in critical state and they also cooperate with each other, which induces system to reach a new state.
基金The national natural science foundation (61672442,61503316,61273290,61373147)Xiamen Scientific Plan Project (2014S0048,3502Z20123037)+1 种基金Fujian Scientific Plan Project (2013HZ00041)Fujian provincial education office A-class project(JA13238)
文摘An image trust root is a special type of soft trust root for trusted computing. However,image trust root generation is difficult,as it needs a corresponding stable logic feature generation model and algorithm for dynamical and sustained authentication. This paper proposes a basic function of constructing new scale-spaces with deep detecting ability and high stability for image features aimed at image root generation. According to the heat distribution and spreading principle of various kinds of infinitesimal heat sources in the space medium,a multi-embed nonlinear diffusion equation that corresponds to the multi-embed nonlinear scale-space is proposed,a HARRIS-HESSIAN scale-space evaluation operator that aims at the structure acceleration characteristics of a local region and can make use of image pixels' relative spreading movement principle was constructed,then a single-parameter global symmetric proportion(SPGSP) operator was also constructed. An authentication test with 3000 to 5000 cloud entities shows the new scale-space can work well and is stable,when the whole cloud has 5%-50% behavior with un-trusted entities. Consequently,it can be used as the corresponding stable logic feature generation model and algorithm for all kinds of images,and logic relationships among image features for trust roots.