To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismi...To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismic sections and point out the differences between the two. We recognize that migration sections more often show spatial aliasing than stacked sections. Second, from wave propagation theory, I know that migration output is a new spatial sampling process and seismic prestack time migration can provide the high density sampling to prevent spatial aliasing on high resolution migration sections. Using a 2D seismic forward modeling analysis, I have found that seismic spatial aliasing noise can be eliminated by high density spatial sampling in prestack migration. In a 3D seismic data study for Daqing Oilfield in the Songliao Basin, I have also found that seismic sections obtained by high-density spatial sampling (10 ×10 m) in prestack migration have less spatial aliasing noise than those obtained by conventional low density spatial sampling (20 × 40 m) in prestack migration.展开更多
Shadow is one of the major problems in remotely sensed imagery which hampers the accuracy of information extraction and change detection.In these images,shadow is generally produced by different objects,namely,cloud,m...Shadow is one of the major problems in remotely sensed imagery which hampers the accuracy of information extraction and change detection.In these images,shadow is generally produced by different objects,namely,cloud,mountain and urban materials.The shadow correction process consists of two steps:detection and de-shadowing.This paper reviews a range of techniques for both steps,focusing on urban regions(urban shadows),mountainous areas(topographic shadow),cloud shadows and composite shadows.Several issues including the problems and the advantages of those algorithms are discussed.In recent years,thresholding and recovery techniques have become important for shadow detection and de-shadowing,respectively.Research on shadow correction is still an important topic,particularly for urban regions(in high spatial resolution data) and mountainous forest(in high and medium spatial resolution data).Moreover,new algorithms are needed for shadow correction,especially given the advent of new satellite images.展开更多
【Title】【Author】【Addresses】1 The control mechanisms of topography on alpine treeline pattern are critical to understanding treeline dynamics and future changes. These mechanisms have not been understood quite wel...【Title】【Author】【Addresses】1 The control mechanisms of topography on alpine treeline pattern are critical to understanding treeline dynamics and future changes. These mechanisms have not been understood quite well enough because of increasing human disturbance and low data resolution. In this study, the relationship between the treeline pattern and topography was analyzed based on high spatial resolution remote sensing data and a digital elevation model in an area in Changbai Mountain with little human disturbance. Future treeline patterns were also predicted. The results showed that (a) aspects with high solar radiation and low snow cover have a high coverage rate of trees, (b) the peak coverage rate of trees switches from low slopes (〈5°) to medium slopes (5°~25°) as the elevation rises because of the extreme environment, (c) the coverage rate of trees is a function that depends on environmental factors controlled by topography, (d) the future treeline pattern is controlled by new temperature mechanisms, new environmental factors and the reallocation effect of topography. Our research implies that topography controls the treeline pattern and changes in the treeline pattern associated with global warming, due to the effect of global warming on environmental factors. This study may well explain the causes of heterogeneous changes in the treeline pattern in the horizontal direction as well as differences in treeline response to climate warming.展开更多
Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we p...Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we propose an improved Mean Shift Algorithm in consideration of the characteristics of these images. First, images were classified into several homogeneous color regions and texture regions by conducting variance detection on the color space. Next, each homogeneous color region was directly segmented to generate the preliminary results by applying the Mean Shift Algorithm. For each texture region, we conduct a high-dimensional feature space by extracting information such as color, texture and shape comprehensively, and work out a proper bandwidth according to the normalized distribution density. Then the bandwidth variable Mean Shift Algorithm was applied to obtain segmentation results by conducting the pattern classification in feature space. Last, the final results were obtained by merging these regions by means of the constructed cost functions and removing the oversegmented regions from the merged regions. It has been experimentally segmented on the high spatial resolution remote sensing images collected by Quickbird and Unmanned Aerial Vehicle(UAV). We put forward an approach to evaluate the segmentation results by using the segmentation matching index(SMI). This takes into consideration both the area and the spectrum. The experimental results suggest that the improved Mean Shift Algorithm outperforms the conventional one in terms of accuracy of segmentation.展开更多
Spectral remote sensing technique is usually used to monitor flood and waterlogging disaster.Although spectral remote sensing data have many advantages for ground information observation,such as real time and high spa...Spectral remote sensing technique is usually used to monitor flood and waterlogging disaster.Although spectral remote sensing data have many advantages for ground information observation,such as real time and high spatial resolution,they are often interfered by clouds,haze and rain.As a result,it is very difficult to retrieve ground information from spectral remote sensing data under those conditions.Compared with spectral remote sensing tech-nique,passive microwave remote sensing technique has obvious superiority in most weather conditions.However,the main drawback of passive microwave remote sensing is the extreme low spatial resolution.Considering the wide ap-plication of the Advanced Microwave Scanning Radiometer-Earth Observing System(AMSR-E) data,an AMSR-E data unmixing method was proposed in this paper based on Bellerby's algorithm.By utilizing the surface type classifi-cation results with high spatial resolution,the proposed unmixing method can obtain the component brightness tem-perature and corresponding spatial position distribution,which effectively improve the spatial resolution of passive microwave remote sensing data.Through researching the AMSR-E unmixed data of Yongji County,Jilin Provinc,Northeast China after the worst flood and waterlogging disaster occurred on July 28,2010,the experimental results demonstrated that the AMSR-E unmixed data could effectively evaluate the flood and waterlogging disaster.展开更多
Massive MIMO systems offer a high spatial resolution that can drastically increase the spectral and/or energy efficiency by employing a large number of antennas at the base station(BS).In a distributed massive MIMO sy...Massive MIMO systems offer a high spatial resolution that can drastically increase the spectral and/or energy efficiency by employing a large number of antennas at the base station(BS).In a distributed massive MIMO system,the capacity of fiber backhaul that links base station and remote radio heads is usually limited,which becomes a bottleneck for realizing the potential performance gain of both downlink and uplink.To solve this problem,we propose a joint antenna selection and user scheduling which is able to achieve a large portion of the potential gain provided by the massive MIMO array with only limited backhaul capacity.Three sub-optimal iterative algorithms with the objective of sumrate maximization are proposed for the joint optimization of antenna selection and user scheduling,either based on greedy fashion or Frobenius-norm criteria.Convergence and complexity analysis are presented for the algorithms.The provided Monte Carlo simulations show that,one of our algorithms achieves a good tradeoff between complexity and performance and thus is especially fit for massive MIMO systems.展开更多
Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods...Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.展开更多
Sea surface winds (SSWs) are vital to many meteorological and oceanographic applications, especially for regional study of short-range forecasting and Numerical Weather Prediction (NWP) assimilation. Spaceborne se...Sea surface winds (SSWs) are vital to many meteorological and oceanographic applications, especially for regional study of short-range forecasting and Numerical Weather Prediction (NWP) assimilation. Spaceborne seatterometers can provide global ocean surface vector wind products at high spatial resolution. However, given the limited spatial coverage and revisit time for an individual sensor, it is valuable to study improvements of multiple microwave scatterometer observations, including the advanced scatterometer onboard parallel satellites MetOp-A (ASCAT-A) and MetOp-B (ASCAT-B) and microwave scatterometers aboard Oceansat-2 (OSCAT) and HY-2A (HY2-SCAT). These four scatterometer-derived wind products over the China Seas (0°-40°N, 105°-135°E) were evaluated in terms of spatial coverage, revisit time, bias of wind speed and direction, after comparison with ERA-Interim forecast winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) and spectral analysis of wind components along the satellite track. The results show that spatial coverage of wind data observed by combination of the four sensors over the China Seas is about 92.8% for a 12-h interval at 12:00 and 90.7% at 24:00, respectively. The analysis of revisit time shows that two periods, from 5:30-8:30 UTC and 17:00-21:00 UTC each day, had no observations in the study area. Wind data observed by the four sensors along satellite orbits in one month were compared with ERA-Interim data, indicating that bias of both wind speed and direction varies with wind speed, especially for speeds less than 7 m/s. The bias depends on characteristics of each satellite sensor and its retrieval algorithm for wind vector data. All these results will be important as guidance in choosing the most suitable wind product for applications and for constructing blended SSW products.展开更多
According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under...According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MO DIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing highfrequency information. The neighborhood correction coefficient method (NC CM) is set up based on the search neighborhood of a certain size to fuse lowfrequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the al gorithm in the paper. Verification results show that the texture information of TM data and high spec tral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parame ters.展开更多
Mooring observations were conducted from July 16, 2011 to March 30, 2012 east of Mindanao, Philippines (127°2.8'E, 8°0.3'N) to observe the abyssal current at about 5 600 m deep and 500 m above the ocean ...Mooring observations were conducted from July 16, 2011 to March 30, 2012 east of Mindanao, Philippines (127°2.8'E, 8°0.3'N) to observe the abyssal current at about 5 600 m deep and 500 m above the ocean bottom. Several features were revealed: 1) the observed abyssal current was highly variable with standard deviations of 57.3 mrn/s and 34.0 ram/s, larger than the mean values of-31.9 and 16.6 mm/s for the zonal and meridional components, respectively; 2) low-frequency current longer than 6 days exhibited strong seasonal variation, flowing southeastward (mean flow direction of 119.0° clockwise from north) before about October 1, 2011 and northwestward (mean flow direction of 60.5° counter-clockwise from north) thereafter; 3) the high-frequency flow bands were dominated by tidal currents O1, K1, M2, and S2, and near-inertial currents, whose frequencies were higher than the local inertial frequency. The two diurnal tidal constituents were much stronger than the two semidiumal ones. This study provides for the first time an observational insight into the abyssal western boundary current east of Mindanao based on long-term observations at one site. It is meaningful for further research into the deep and abyssal circulation over the whole Philippine Sea and the 3D structure of the westem boundary current system in this region. More observational and high-resolution model studies are needed to examine the spatial structure and temporal variation of the abyssal current over a much larger space and longer period, their relation to the upper-layer circulation, and the underlying dynamics.展开更多
The data from Acoustic Doppler Current Profiler (ADCP) of the three-dimensional current-field, echo intensity, modulation of Suspended Sediment Concentration (SSC), and related water levels and wind velocities hav...The data from Acoustic Doppler Current Profiler (ADCP) of the three-dimensional current-field, echo intensity, modulation of Suspended Sediment Concentration (SSC), and related water levels and wind velocities have been analyzed as a function of water depth above submerged asymmetric compound sand waves during a tidal cycle in the Lister Tiefofthe German Bight in the North Sea. Signatures of vertical current component, echo intensities and calculated SSC modulations in the water column depend strongly on wind and current velocity. Bursts of vertical current component and echo intensity are triggered by sand waves itself as well as by superimposed megaripples due to current wave interaction at high current ≥ 1.0 m's1 and wind speeds ≥ 10.0 m·s^-1, preferably of opposite directions, measured at high spatial resolution. The magnitude of currents and SSC modulations during ebb and flood tidal current phases are only weakly time dependent, whereas the local magnitudes of these parameters are variable in space above the sand waves. Some hydrodynamic parameters are further investigated and analyzed, showing a consistence of ADCP measurements in the applied theory.展开更多
This paper presents an assessment of air quality of the Kathmandu valley, capital city of Nepal. This is the largest urbanized area in the country of about 300 km2. In the last two decades an intensive development of ...This paper presents an assessment of air quality of the Kathmandu valley, capital city of Nepal. This is the largest urbanized area in the country of about 300 km2. In the last two decades an intensive development of demographic, traffic and industry growth in the region was observed which was reflected on the air quality degradation. In order to evaluate the urban air quality in Kathmandu, a field monitoring network for particle deposition, nitrogen dioxide (NO2) and sulphur dioxide (SO2) by passive sampling with high space resolution was implemented in co-operation with IVL-Sweden. The net work composed of 60 monitoring sites distributed in a grid of 1 × 1 km2 covering all over the main city and some rural valley. Monitoring were carried out for two seasons, rainy and dry as two campaign monitoring. The diffusive samplers were prepared and analyzed in IVL, Sweden. Good agreements in particle deposition between the two campaigns were observed. The particle deposition to the surrogate surface varied between 3 and 608 μg@cm2·monthl for the monitoring periods. The NOz concentrations on the other hand were quite similar in the two campaigns, and the SO2 concentrations were much lower in the first campaign compared to the second. The ranges of NO2 and SO2 concentrations were found to be from 5.6 to 52.6 μg/m3 and 0.6 to 23.4 μg·m-3 respectively. Arc Info/Arc map GIS 9.2 software was used for production of maps of spatial distribution of all the three parameters in the valley. Seasonal variation and traffic influence were also studied. Local meteorological effects in the distribution of pollutants were clearly observed and the NO2 concentrations were strictly related with traffic intensity.展开更多
We present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and the sub-wavenumber high resolut...We present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and the sub-wavenumber high resolution sum-frequency generation vibrational spectroscopy measurements. In principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system. However, when the molecular systems are with several coupled or overlapping vibrational modes, obtain- ing detailed spectroscopic and coherent dynamics information is not as straightforward and rather difficult from either the time-domain or the frequency domain measurements. For the case of air/DMSO interface that is with moderately complex vibrational spectra, we show that the frequency-domain measurement with sub-wavenumber high-resolution sum-frequency generation vibrational spectroscopy is probably more advantageous than the time- domain measurement in obtaining quantitative understanding of the structure and coherent dynamics of the molecular interface.展开更多
At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from a...At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle(UAV), and a digital elevation model(DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include Quick Bird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.展开更多
The Zhujiang (Pearl) River Delta is one of the most developed Extended Metropolitan Regions (EMR) in China.With the rapid urbanization,the agglomeration of population and industries has emerged,which has led to dramat...The Zhujiang (Pearl) River Delta is one of the most developed Extended Metropolitan Regions (EMR) in China.With the rapid urbanization,the agglomeration of population and industries has emerged,which has led to dramatic changes of spatial structure and land use in this region.With data of high resolution TM remote sensing images and Google Earth maps,this paper identified and analyzed the spatial pattern of the Zhujiang River Delta EMR using Envy and ArcGIS tools.It was found that 1) the industrial land uses were expanding substantially,particularly on the bank sides of the Zhujiang River estuary;2) large-scale housing developments were concentrated in the fringe of metropolitan areas such as those of Guangzhou and Shenzhen;3) a regional transportation network with the spatial pattern of ″1 circle +2 pieces + 3 axes″ had significantly affected the location choice of manufacture enterprises.At the same time,both highly specialized land use and severely mixed land use patterns were identified.As a consequence of the latter,land use efficiency of the whole EMR areas was reduced.Moreover,ecologic and environmental problems were severe.Based on the above analysis,suggestions were given from the viewpoint of spatial safety,land use efficiency,and the reorganization of spatial structure in the Zhujiang River Delta EMR.展开更多
This paper presents the changes of crust thickness and Poisson's ratios distribution in the Binchuan region, where the first air-gun transmitting station and it's a small dense array were deployed. From September 20...This paper presents the changes of crust thickness and Poisson's ratios distribution in the Binchuan region, where the first air-gun transmitting station and it's a small dense array were deployed. From September 2011 to January 2014, more than 239 teleseismic events of M≥ 6.0 were recorded in 16 stations in the Binchuan region. Their P-wave receiver functions were analyzed respectively. The high spatial resolution result shows that the average crust thickness of Binchuan region is 45.3km, it follows the rule of "deeper in the north and east part, shallower in the south and west part. " The deepest region is in Xiaoyindian Station; the crust thickness is 47.9km; the shallowest region is in Paiying Station, it has the thickness of 42. lkm. It shows that the deeper Moho surface nearby the Chenghai fault and shallower nearby the Honghe fault; the isoline distribution of thickness changes greatly nearby the Chenghai fault and slowly nearby the Honghe fault. From the distribution of Poisson's ratios, it is unevenly in the study area with a great difference from the north part to the south part, which shows a characteristic of "lower in the north, higher in the south". The Poisson's ratio nearby the Honghe fault is medium too high ( 0. 26 ≤ σ≤0. 29 ) ; lower nearby the Chenghai fault ( ≤0. 26). This paper concludes the possible reason of different characteristic between Poisson's ratio and crust thickness is thicker in the upper crust in the Binchuan region.展开更多
It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolutio...It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolution and finer resolution data. The first category uses time series of data to retrieve the variation of land surface for classification, which are usually used for coarser resolution data with high temporal frequency. The second category uses fine spatial resolution data to classify different land surface. With the launch of Chinese satellite constellation HJ-1in 2008, four 30 m spatial resolution CCDs with about 360 km coverage for each one onboard two satellites made a revisit period of two days, which brought a new type of data with both high spatial resolution and high temporal frequency. Therefore, by taking the spatiotemporal advantage of HJ-1/CCD data we propose a new method for finer resolution land cover mapping using the time series HJ-1/CCD data, which can greatly improve the land cover mapping accuracy. In our two study areas, the very high resolution remote sensing data within Google Earth are used to validate the land cover mapping results, which shows a very high mapping accuracy of 95.76% and 83.78% and a high Kappa coefficient of 0.9423 and 0.8165 in the Dahuofang area of Liaoning Province and the Heiquan area of Gansu Province respectively.展开更多
Despite the significant improvement on spatial resolution, NanoSIMS still preserves relatively high mass resolution, sensitivity, and analytical precision. It has become an important analytical platform to determine c...Despite the significant improvement on spatial resolution, NanoSIMS still preserves relatively high mass resolution, sensitivity, and analytical precision. It has become an important analytical platform to determine chemical compositions of solid materials, and has been widely used in space, earth, life, and materials sciences, etc. By using a Cs+ ion beam with a size as small as 50 nm scanning over sample surfaces, we are able to obtain high spatial resolution images of up to 7 species simultaneously. When utilizing Faraday cup, high analytical precision of 0.3‰-0.5‰ (1SD) for C, O and S isotopic analysis can be achieved. Although this precision level is still lower than that of conventional SIMS, it already meets the major requirements of Earth Sciences. In 2011, the first NanoSIMS of China (Cameca NanoSIMS 50L) was installed at Institute of Geology and Geophysics, Chinese Academy of Sciences. Based on the working mechanism and analytical modes of the instrument, this paper will systematically introduce the analytical methods established with the NanoSIMS and their potential applications in earth sciences. These methods include trace element distribution images in mineral zoning, high spatial resolution (2-5/am) Pb-Pb and U-Pb dating, water content and H isotopic analysis for silicate glass and apatite, C isotopic analysis for diamond and graphite, O isotopic analysis for carbonate, S isotopic analysis for sulfides. In addition, the specific requirements for sample preparation will also be introduced in order to facilitate domestic earth scientists' use.展开更多
文摘To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismic sections and point out the differences between the two. We recognize that migration sections more often show spatial aliasing than stacked sections. Second, from wave propagation theory, I know that migration output is a new spatial sampling process and seismic prestack time migration can provide the high density sampling to prevent spatial aliasing on high resolution migration sections. Using a 2D seismic forward modeling analysis, I have found that seismic spatial aliasing noise can be eliminated by high density spatial sampling in prestack migration. In a 3D seismic data study for Daqing Oilfield in the Songliao Basin, I have also found that seismic sections obtained by high-density spatial sampling (10 ×10 m) in prestack migration have less spatial aliasing noise than those obtained by conventional low density spatial sampling (20 × 40 m) in prestack migration.
基金Under the auspices of National Technology Research and Development Program of China(No.2006BAJ05A02)National Natural Science Foundation of China(No.31172023)
文摘Shadow is one of the major problems in remotely sensed imagery which hampers the accuracy of information extraction and change detection.In these images,shadow is generally produced by different objects,namely,cloud,mountain and urban materials.The shadow correction process consists of two steps:detection and de-shadowing.This paper reviews a range of techniques for both steps,focusing on urban regions(urban shadows),mountainous areas(topographic shadow),cloud shadows and composite shadows.Several issues including the problems and the advantages of those algorithms are discussed.In recent years,thresholding and recovery techniques have become important for shadow detection and de-shadowing,respectively.Research on shadow correction is still an important topic,particularly for urban regions(in high spatial resolution data) and mountainous forest(in high and medium spatial resolution data).Moreover,new algorithms are needed for shadow correction,especially given the advent of new satellite images.
基金supported by the Special Fund of National Seismological Bureau, China (Grant No. 201208005)the National Natural Science Foundation of China (Grant No. 41171072)the National Grand Fundamental Research 973 Program of China (Grant No. 2009CB426305)
文摘【Title】【Author】【Addresses】1 The control mechanisms of topography on alpine treeline pattern are critical to understanding treeline dynamics and future changes. These mechanisms have not been understood quite well enough because of increasing human disturbance and low data resolution. In this study, the relationship between the treeline pattern and topography was analyzed based on high spatial resolution remote sensing data and a digital elevation model in an area in Changbai Mountain with little human disturbance. Future treeline patterns were also predicted. The results showed that (a) aspects with high solar radiation and low snow cover have a high coverage rate of trees, (b) the peak coverage rate of trees switches from low slopes (〈5°) to medium slopes (5°~25°) as the elevation rises because of the extreme environment, (c) the coverage rate of trees is a function that depends on environmental factors controlled by topography, (d) the future treeline pattern is controlled by new temperature mechanisms, new environmental factors and the reallocation effect of topography. Our research implies that topography controls the treeline pattern and changes in the treeline pattern associated with global warming, due to the effect of global warming on environmental factors. This study may well explain the causes of heterogeneous changes in the treeline pattern in the horizontal direction as well as differences in treeline response to climate warming.
基金supported by the Fundamental Research Funds for the Central Universities of China (Grant No.2013SCU11006)the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying,Mapping and Geoinformation of China (Grant No.DM2014SC02)the Key Laboratory of Geospecial Information Technology,Ministry of Land and Resources of China (Grant No.KLGSIT201504)
文摘Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we propose an improved Mean Shift Algorithm in consideration of the characteristics of these images. First, images were classified into several homogeneous color regions and texture regions by conducting variance detection on the color space. Next, each homogeneous color region was directly segmented to generate the preliminary results by applying the Mean Shift Algorithm. For each texture region, we conduct a high-dimensional feature space by extracting information such as color, texture and shape comprehensively, and work out a proper bandwidth according to the normalized distribution density. Then the bandwidth variable Mean Shift Algorithm was applied to obtain segmentation results by conducting the pattern classification in feature space. Last, the final results were obtained by merging these regions by means of the constructed cost functions and removing the oversegmented regions from the merged regions. It has been experimentally segmented on the high spatial resolution remote sensing images collected by Quickbird and Unmanned Aerial Vehicle(UAV). We put forward an approach to evaluate the segmentation results by using the segmentation matching index(SMI). This takes into consideration both the area and the spectrum. The experimental results suggest that the improved Mean Shift Algorithm outperforms the conventional one in terms of accuracy of segmentation.
基金Under the auspices of National Natural Science Foundation of China (No. 40971189)Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-340)China Postdoctoral Science Foundation (No. 20100471276)
文摘Spectral remote sensing technique is usually used to monitor flood and waterlogging disaster.Although spectral remote sensing data have many advantages for ground information observation,such as real time and high spatial resolution,they are often interfered by clouds,haze and rain.As a result,it is very difficult to retrieve ground information from spectral remote sensing data under those conditions.Compared with spectral remote sensing tech-nique,passive microwave remote sensing technique has obvious superiority in most weather conditions.However,the main drawback of passive microwave remote sensing is the extreme low spatial resolution.Considering the wide ap-plication of the Advanced Microwave Scanning Radiometer-Earth Observing System(AMSR-E) data,an AMSR-E data unmixing method was proposed in this paper based on Bellerby's algorithm.By utilizing the surface type classifi-cation results with high spatial resolution,the proposed unmixing method can obtain the component brightness tem-perature and corresponding spatial position distribution,which effectively improve the spatial resolution of passive microwave remote sensing data.Through researching the AMSR-E unmixed data of Yongji County,Jilin Provinc,Northeast China after the worst flood and waterlogging disaster occurred on July 28,2010,the experimental results demonstrated that the AMSR-E unmixed data could effectively evaluate the flood and waterlogging disaster.
基金supported in part by National Natural Science Foundation of China No.61171080
文摘Massive MIMO systems offer a high spatial resolution that can drastically increase the spectral and/or energy efficiency by employing a large number of antennas at the base station(BS).In a distributed massive MIMO system,the capacity of fiber backhaul that links base station and remote radio heads is usually limited,which becomes a bottleneck for realizing the potential performance gain of both downlink and uplink.To solve this problem,we propose a joint antenna selection and user scheduling which is able to achieve a large portion of the potential gain provided by the massive MIMO array with only limited backhaul capacity.Three sub-optimal iterative algorithms with the objective of sumrate maximization are proposed for the joint optimization of antenna selection and user scheduling,either based on greedy fashion or Frobenius-norm criteria.Convergence and complexity analysis are presented for the algorithms.The provided Monte Carlo simulations show that,one of our algorithms achieves a good tradeoff between complexity and performance and thus is especially fit for massive MIMO systems.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 41401078, 91025011, 41222001)National Basic Research Program of China (2013CBA01806)
文摘Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.
基金Supported by the Shandong Joint Fund for Marine Science Research Centers(No.U1406404)the National High Technology Research and Development Program of China(No.2013AA09A505)the National Basic Research Program of China(973 Program)(No.2012CB955600)
文摘Sea surface winds (SSWs) are vital to many meteorological and oceanographic applications, especially for regional study of short-range forecasting and Numerical Weather Prediction (NWP) assimilation. Spaceborne seatterometers can provide global ocean surface vector wind products at high spatial resolution. However, given the limited spatial coverage and revisit time for an individual sensor, it is valuable to study improvements of multiple microwave scatterometer observations, including the advanced scatterometer onboard parallel satellites MetOp-A (ASCAT-A) and MetOp-B (ASCAT-B) and microwave scatterometers aboard Oceansat-2 (OSCAT) and HY-2A (HY2-SCAT). These four scatterometer-derived wind products over the China Seas (0°-40°N, 105°-135°E) were evaluated in terms of spatial coverage, revisit time, bias of wind speed and direction, after comparison with ERA-Interim forecast winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) and spectral analysis of wind components along the satellite track. The results show that spatial coverage of wind data observed by combination of the four sensors over the China Seas is about 92.8% for a 12-h interval at 12:00 and 90.7% at 24:00, respectively. The analysis of revisit time shows that two periods, from 5:30-8:30 UTC and 17:00-21:00 UTC each day, had no observations in the study area. Wind data observed by the four sensors along satellite orbits in one month were compared with ERA-Interim data, indicating that bias of both wind speed and direction varies with wind speed, especially for speeds less than 7 m/s. The bias depends on characteristics of each satellite sensor and its retrieval algorithm for wind vector data. All these results will be important as guidance in choosing the most suitable wind product for applications and for constructing blended SSW products.
基金Supported by the National Natural Science Foundation of China(No.41101503)the National Social Science Foundation of China(No.11&ZD161)Graduate Innovative Scientific Research Project of Chongqing Technology and Business University(No.yjscxx2014-052-29)
文摘According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MO DIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing highfrequency information. The neighborhood correction coefficient method (NC CM) is set up based on the search neighborhood of a certain size to fuse lowfrequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the al gorithm in the paper. Verification results show that the texture information of TM data and high spec tral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parame ters.
基金Supported by the China Postdoctoral Science Foundation(No.2013M530331)the Project of State Strategic Program of Global Change(No.2013CB956202)
文摘Mooring observations were conducted from July 16, 2011 to March 30, 2012 east of Mindanao, Philippines (127°2.8'E, 8°0.3'N) to observe the abyssal current at about 5 600 m deep and 500 m above the ocean bottom. Several features were revealed: 1) the observed abyssal current was highly variable with standard deviations of 57.3 mrn/s and 34.0 ram/s, larger than the mean values of-31.9 and 16.6 mm/s for the zonal and meridional components, respectively; 2) low-frequency current longer than 6 days exhibited strong seasonal variation, flowing southeastward (mean flow direction of 119.0° clockwise from north) before about October 1, 2011 and northwestward (mean flow direction of 60.5° counter-clockwise from north) thereafter; 3) the high-frequency flow bands were dominated by tidal currents O1, K1, M2, and S2, and near-inertial currents, whose frequencies were higher than the local inertial frequency. The two diurnal tidal constituents were much stronger than the two semidiumal ones. This study provides for the first time an observational insight into the abyssal western boundary current east of Mindanao based on long-term observations at one site. It is meaningful for further research into the deep and abyssal circulation over the whole Philippine Sea and the 3D structure of the westem boundary current system in this region. More observational and high-resolution model studies are needed to examine the spatial structure and temporal variation of the abyssal current over a much larger space and longer period, their relation to the upper-layer circulation, and the underlying dynamics.
文摘The data from Acoustic Doppler Current Profiler (ADCP) of the three-dimensional current-field, echo intensity, modulation of Suspended Sediment Concentration (SSC), and related water levels and wind velocities have been analyzed as a function of water depth above submerged asymmetric compound sand waves during a tidal cycle in the Lister Tiefofthe German Bight in the North Sea. Signatures of vertical current component, echo intensities and calculated SSC modulations in the water column depend strongly on wind and current velocity. Bursts of vertical current component and echo intensity are triggered by sand waves itself as well as by superimposed megaripples due to current wave interaction at high current ≥ 1.0 m's1 and wind speeds ≥ 10.0 m·s^-1, preferably of opposite directions, measured at high spatial resolution. The magnitude of currents and SSC modulations during ebb and flood tidal current phases are only weakly time dependent, whereas the local magnitudes of these parameters are variable in space above the sand waves. Some hydrodynamic parameters are further investigated and analyzed, showing a consistence of ADCP measurements in the applied theory.
文摘This paper presents an assessment of air quality of the Kathmandu valley, capital city of Nepal. This is the largest urbanized area in the country of about 300 km2. In the last two decades an intensive development of demographic, traffic and industry growth in the region was observed which was reflected on the air quality degradation. In order to evaluate the urban air quality in Kathmandu, a field monitoring network for particle deposition, nitrogen dioxide (NO2) and sulphur dioxide (SO2) by passive sampling with high space resolution was implemented in co-operation with IVL-Sweden. The net work composed of 60 monitoring sites distributed in a grid of 1 × 1 km2 covering all over the main city and some rural valley. Monitoring were carried out for two seasons, rainy and dry as two campaign monitoring. The diffusive samplers were prepared and analyzed in IVL, Sweden. Good agreements in particle deposition between the two campaigns were observed. The particle deposition to the surrogate surface varied between 3 and 608 μg@cm2·monthl for the monitoring periods. The NOz concentrations on the other hand were quite similar in the two campaigns, and the SO2 concentrations were much lower in the first campaign compared to the second. The ranges of NO2 and SO2 concentrations were found to be from 5.6 to 52.6 μg/m3 and 0.6 to 23.4 μg·m-3 respectively. Arc Info/Arc map GIS 9.2 software was used for production of maps of spatial distribution of all the three parameters in the valley. Seasonal variation and traffic influence were also studied. Local meteorological effects in the distribution of pollutants were clearly observed and the NO2 concentrations were strictly related with traffic intensity.
文摘We present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and the sub-wavenumber high resolution sum-frequency generation vibrational spectroscopy measurements. In principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system. However, when the molecular systems are with several coupled or overlapping vibrational modes, obtain- ing detailed spectroscopic and coherent dynamics information is not as straightforward and rather difficult from either the time-domain or the frequency domain measurements. For the case of air/DMSO interface that is with moderately complex vibrational spectra, we show that the frequency-domain measurement with sub-wavenumber high-resolution sum-frequency generation vibrational spectroscopy is probably more advantageous than the time- domain measurement in obtaining quantitative understanding of the structure and coherent dynamics of the molecular interface.
基金funded by the National Key Technologies R&D Program of China (Grants No. 2017YFC0505104)the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying, Mapping and Geoinformation of China (Grants No. DM2016SC09)
文摘At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle(UAV), and a digital elevation model(DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include Quick Bird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.
基金Under the auspices of National Natural Science Foundation of China (No.40901088,40671063)Knowledge Innovation Programs of Chinese Academy of Sciences (No.KZCX2-YW-321)China Postdoctoral Science Foundation (No.20080440513,200902134)
文摘The Zhujiang (Pearl) River Delta is one of the most developed Extended Metropolitan Regions (EMR) in China.With the rapid urbanization,the agglomeration of population and industries has emerged,which has led to dramatic changes of spatial structure and land use in this region.With data of high resolution TM remote sensing images and Google Earth maps,this paper identified and analyzed the spatial pattern of the Zhujiang River Delta EMR using Envy and ArcGIS tools.It was found that 1) the industrial land uses were expanding substantially,particularly on the bank sides of the Zhujiang River estuary;2) large-scale housing developments were concentrated in the fringe of metropolitan areas such as those of Guangzhou and Shenzhen;3) a regional transportation network with the spatial pattern of ″1 circle +2 pieces + 3 axes″ had significantly affected the location choice of manufacture enterprises.At the same time,both highly specialized land use and severely mixed land use patterns were identified.As a consequence of the latter,land use efficiency of the whole EMR areas was reduced.Moreover,ecologic and environmental problems were severe.Based on the above analysis,suggestions were given from the viewpoint of spatial safety,land use efficiency,and the reorganization of spatial structure in the Zhujiang River Delta EMR.
基金sponsored by the Special Science and Technology Program of Earthquake Administration of Yunnan Province (KJZX02)Academician Chen Yong Workstation Project of Earthquake Administration of Yunnan Province
文摘This paper presents the changes of crust thickness and Poisson's ratios distribution in the Binchuan region, where the first air-gun transmitting station and it's a small dense array were deployed. From September 2011 to January 2014, more than 239 teleseismic events of M≥ 6.0 were recorded in 16 stations in the Binchuan region. Their P-wave receiver functions were analyzed respectively. The high spatial resolution result shows that the average crust thickness of Binchuan region is 45.3km, it follows the rule of "deeper in the north and east part, shallower in the south and west part. " The deepest region is in Xiaoyindian Station; the crust thickness is 47.9km; the shallowest region is in Paiying Station, it has the thickness of 42. lkm. It shows that the deeper Moho surface nearby the Chenghai fault and shallower nearby the Honghe fault; the isoline distribution of thickness changes greatly nearby the Chenghai fault and slowly nearby the Honghe fault. From the distribution of Poisson's ratios, it is unevenly in the study area with a great difference from the north part to the south part, which shows a characteristic of "lower in the north, higher in the south". The Poisson's ratio nearby the Honghe fault is medium too high ( 0. 26 ≤ σ≤0. 29 ) ; lower nearby the Chenghai fault ( ≤0. 26). This paper concludes the possible reason of different characteristic between Poisson's ratio and crust thickness is thicker in the upper crust in the Binchuan region.
基金supported by the Chinese Academy of Sciences Action Plan for West Development Project (Grant No. KZCX2-XB3-15)the National High-tech R&D Program of China (Grant No. 2012AA12A304)
文摘It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolution and finer resolution data. The first category uses time series of data to retrieve the variation of land surface for classification, which are usually used for coarser resolution data with high temporal frequency. The second category uses fine spatial resolution data to classify different land surface. With the launch of Chinese satellite constellation HJ-1in 2008, four 30 m spatial resolution CCDs with about 360 km coverage for each one onboard two satellites made a revisit period of two days, which brought a new type of data with both high spatial resolution and high temporal frequency. Therefore, by taking the spatiotemporal advantage of HJ-1/CCD data we propose a new method for finer resolution land cover mapping using the time series HJ-1/CCD data, which can greatly improve the land cover mapping accuracy. In our two study areas, the very high resolution remote sensing data within Google Earth are used to validate the land cover mapping results, which shows a very high mapping accuracy of 95.76% and 83.78% and a high Kappa coefficient of 0.9423 and 0.8165 in the Dahuofang area of Liaoning Province and the Heiquan area of Gansu Province respectively.
基金supported by the National Natural Science Foundation of China(Grants Nos.41173012,41103031,41230209,41322022,41221002)
文摘Despite the significant improvement on spatial resolution, NanoSIMS still preserves relatively high mass resolution, sensitivity, and analytical precision. It has become an important analytical platform to determine chemical compositions of solid materials, and has been widely used in space, earth, life, and materials sciences, etc. By using a Cs+ ion beam with a size as small as 50 nm scanning over sample surfaces, we are able to obtain high spatial resolution images of up to 7 species simultaneously. When utilizing Faraday cup, high analytical precision of 0.3‰-0.5‰ (1SD) for C, O and S isotopic analysis can be achieved. Although this precision level is still lower than that of conventional SIMS, it already meets the major requirements of Earth Sciences. In 2011, the first NanoSIMS of China (Cameca NanoSIMS 50L) was installed at Institute of Geology and Geophysics, Chinese Academy of Sciences. Based on the working mechanism and analytical modes of the instrument, this paper will systematically introduce the analytical methods established with the NanoSIMS and their potential applications in earth sciences. These methods include trace element distribution images in mineral zoning, high spatial resolution (2-5/am) Pb-Pb and U-Pb dating, water content and H isotopic analysis for silicate glass and apatite, C isotopic analysis for diamond and graphite, O isotopic analysis for carbonate, S isotopic analysis for sulfides. In addition, the specific requirements for sample preparation will also be introduced in order to facilitate domestic earth scientists' use.